
Recovery Algorithms for planted structures in

Semi-random models

A THESIS

SUBMITTED FOR THE DEGREE OF

Master of Technology (Research)

IN THE

Faculty of Engineering

BY

Rameesh Paul

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

December, 2021

Declaration of Originality

I, Rameesh Paul, with SR No. 04-04-00-10-22-19-1-16995 hereby declare that the material

presented in the thesis titled

Recovery Algorithms for planted structures in Semi-random models

represents original work carried out by me in the Department of Computer Science and

Automation at Indian Institute of Science during the years 2019-2021.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Dr. Anand Louis Advisor Signature

1

© Rameesh Paul

December, 2021

All rights reserved

DEDICATED TO

My family and my friends

Acknowledgements

I want to start by expressing my sincere gratitude towards Prof. Anand Louis for mentoring

me (sometimes even hand holding) into the world of research. From the day I joined his lab, he

has ensured that I see as many nooks and corners of research as possible during my Masters’s

program here. I would also like to thank him for patiently listening to my preposterous ideas and

laboriously explaining why they will not work on numerous occasions. His clarity of thought,

depth of understanding, and ability to pull a rabbit out of a hat when generating ideas is

something I keenly aspire for.

I would like to deeply thank my collaborators Yash Khanna, Akash Kumar, and Anand

Louis, without whom this thesis would not exist. A special thanks to Akash and Anand for

always taking out time to answering basic queries and being always up for discussions. I want

to thank the amazing faculty members of the Algorithms group here, Siddharth Barman, Satish

Govindrajan, Arindam Khan, Anand Louis, and Rahul Saladi. I thank you for the amazing

courses, discussions, and advice you offered, which was instrumental in shaping me as a re-

searcher. I would also like to thank faculty members in other departments, Arvind Ayyer,

Chirayu Athale, Kunal Chaudhury, Aditya Gopalan, Chandra Murthy, and Himanshu Tyagi,

for offering theoretical, proof-based courses which helped me learn skills that were instrumen-

tal for my research. I want to thank Ryan O’Donnell, Pravesh Kothari, Lap Chi Lau, Tim

Roughgarden, Luca Trevisan, and Yihong Wu for making their graduate-level course offerings

publicly available. I want to thank my labmate Sruthi Gorantla for all the discussions and

coffee. I would also like to thank the staff at CSA Office for earnestly resolving any issues I

faced with a smile on their face.

I want to thank my friends I made during my stay here, Arka Ray and Eklavya Sharma.

Through our collaborations and discussions on proofs, algorithms and other apsects of research

as doing quality and independent research, I have matured as a researcher. I would like to

specifically thank Arka for painstakingly going through this thesis and providing me valuable

feedback. I would like to thank my colleagues Utkarsh Joshi, Anand Krishna, Rahul Madhavan,

Shravani Patil, Vishakha Patil, Ramakrishna, Virti Savla, and KVN Sreenivas,

i

Acknowledgements

I want to thank my friends Karan Batta, Ishan Gambhir, Anirudh Garg, Sahil Gupta,

Oshin Jain, Kamal Jnagal, Armaan Monga, Aftab Rai, Rishabh Sharma, and Niraj Tanwar

for the constant love and support I received from them. Apologies to Anirudh and Niraj for

missing your wedding ceremonies owing to my academic commitments. I want to thank my

closest friend and partner, Akansha Dimri, for her steadfast support, incessant patience, and

constant love, care and affection. I want to thank all my friends for believing in me and their

persistent motivation when even I had doubts about myself. I would also like to thank Akansha,

Sahil, Karan and Armaan for spending a torrential amount of time and energy on stimulating

discussions on topics ranging from technical to health to sports to cinema and life in general.

At last but certainly not least, I would like to thank my mother Sukhwinder Kaur, my father

Chaman Lal, and my brother Krishna for their endless love, encouragement, and support. This

journey would not have been possible without them.

ii

Abstract

For many NP-hard problems, the analysis of best-known approximation algorithms yield “poor”

worst-case guarantees. However, using various heuristics, the problems can be solved (to some

extent) in real-life instances. This success can be attributed to the atypicality of worst-case

instances in real life, and therefore motivates studying the problem in “easier” instances. Ana-

lyzing the problem in Planted solution models and Semi-random models is one such systematic

approach along these lines.

In this thesis, we study planted solution models and semi-random models for various graph

problems. Given a graph G with n vertices, we consider the task of finding the largest induced

subgraph of G with a particular structure. We start by studying the problem where the par-

ticular structure is a planar graph. Next, we look at the Odd Cycle Transversal problem or

equivalently the problem of finding the largest induced bipartite subgraph. Finally, we study

the problem of finding the largest independent set in r-uniform hypergraphs. All these problems

are NP-hard and have abysmal worst-case approximation guarantees.

An instance of a planted solution model is constructed by starting with a set of vertices V ,

and choosing a set S ⊆ V of k vertices and adding a particular structure on it. Edges between

pairs of vertices in S× (V \ S) and (V \ S)× (V \ S) are added independently with probability

p. The algorithmic task then is to recover this planted structure. As a special case for all these

problems, when the planted structure is an empty graph, the problem reduces to recovering a

planted independent set and we don’t expect efficient recovery algorithms for k = o (
√
n).

For the problem of finding the largest induced bipartite subgraph, we give an exact recovery

algorithm that works for k = Ωp

(√
nlogn

)
. For the problem of finding maximum independent

set in r-uniform hypergraphs, we give an algorithm which works for k = Ωp,ε

(
n(r−1)/(r−0.5)

)
and

returns an independent set of size (1 − ε)k. Our results also hold for a natural semi-random

model of instances inspired by Feige and Kilian [FK01] model. Our algorithms are based on

analyzing continuous relaxations of these problems. We employ techniques from Spectral Graph

Theory, Convex Optimization (Linear Programs (LP’s) and Semi-Definite Programs (SDP’s)

relaxations), and Lasserre/Sum-of-Squares hierarchy strengthening of convex relaxations.

iii

Publications based on this Thesis

1. Independent sets in Semi-random hypergraphs

Joint work with Yash Khanna and Anand Louis.

Algorithms and Data Structures Symposium (WADS 2021)

2. Exact recovery algorithm for Planted Bipartite Graph in Semi-random Graphs

Joint work with Akash Kumar and Anand Louis

Part of an ongoing manuscript under progress.

iv

Contents

Acknowledgements i

Abstract iii

Publications based on this Thesis iv

Contents v

List of Figures vii

1 Introduction 1

1.1 Beyond Worst-Case Analysis . 1

1.2 Graph problems in semi-random models . 5

1.3 Our Contributions . 7

1.4 Organisation . 8

2 Preliminaries 9

2.1 Notation . 9

2.2 Linear Algebra and Probability . 10

2.2.1 Linear Algebraic Facts . 10

2.2.2 Probabilistic Inequalities . 11

2.3 Perturbation Theory . 11

2.4 Semidefinite Programming (SDP) . 12

2.4.1 Different facets of SDPs . 12

2.4.2 SDP Duality . 16

2.4.3 Lasserre/Sum-of-squares(SOS) hierarchy 17

2.5 SDP/Lasserre hierarchies in approximation algorithms 17

v

CONTENTS

3 Odd Cycle Transversal Problem 18

3.1 Exact Recovery using Subspace Enumeration . 27

3.1.1 Partial recovery of the planted set . 27

3.1.2 Algorithm for full recovery . 31

3.2 Exact recovery in polynomial time using SDP 33

3.2.1 High degree regimes . 34

3.2.1.1 Constructing an optimal dual 34

3.2.1.2 Pseudo-random values of dual variables 37

3.2.2 Low degree regimes . 47

3.2.3 Action of Adversary . 47

3.3 Miscellaneous proofs . 49

3.3.1 Computing the dual of SDP 3.1 . 49

3.3.2 Proof of Proposition 3.1 . 50

3.3.3 Proof of Claim 3.2 . 51

4 Maximum Independent set in hypergraphs 52

4.1 SDP Bounding . 55

4.2 Algorithm for computing a large independent set 56

5 Largest Induced Planar Subgraph 63

5.1 Partial recovery of planted planar graph . 65

5.2 Full recovery of planted planar graph . 66

6 Conclusion 69

Bibliography 71

vi

List of Figures

1.1 Planted solution model Definition 1.1 (left) and Algorithm’s view (right). 3

1.2 Constructing [FK01] model for Independent set problem. 5

3.1 Planted solution model Definition 1.1 (left) and threshold semi-random model

Definition 3.1 (right). 19

vii

Chapter 1

Introduction

1.1 Beyond Worst-Case Analysis

The traditional worst-case analysis paradigm has various shortcomings. Many optimization

problems turn out to be NP-hard in this paradigm. Further, they have “poor” approximation

guarantees for the worst-case instances of the problem. However, in practice, many heuristics

exist that solve the problem (to some extent) in real-life instances. One could attribute this

success to the atypicality of the worst-case instances. This motivates new paradigms for analysis

which can give improved guarantees for “easier” instances of the problem.

In an effort to better understand the complexity of various computationally intractable

problems, a lot of work is focused on special cases of the problem. However, a more systematic

approach is to characterize “easier” instances of the problem and attempt to show that such a

characterization holds for real-world instances. There have been various frameworks proposed

for studying such “easier” instances as paramterized algorithms, perturbation resilient instances,

smoothed analysis etc.

In the area of parameterized algorithms, we analyze algorithms with an additional parameter

k other than the input size n. We then attempt to show that the problem can be solved

exactly in f(k)nO(1) running time (called fixed parameter tractable). A useful parameter in

graph problems is treewidth1, and many NP-hard problems admit a polynomial-time solution

in constant treewidth graphs [Bod88, AP89, FLS+18]. Another approach is to look at the

optimal solution as being resilient to a small perturbation in the input instances. For graph

problems, one such widely used notion of perturbation resilience is Bilu-Linial stability [BL12].

In a γ-stable instance, we require that the edge weights can be scaled by a factor of γ and

1treewidth is roughly a notion of how close the graph is to a tree. Trees are graphs with treewidth 1.

1

this perturbed instance still has the same optimal solution2. In the work [MMV14a], they

show that for O
(√

log n log log n
)

stable instances of the MAX-CUT problem, a standard SDP

relaxation is integral. They also give an LP relaxation which is exact for 4-stable instances of

min multiway cut problem.

Another notion of worst case analysis is that of smoothed analysis where one starts with

a worst-case instance of a problem and considers bounded random perturbations to the input

instance. Spielman and Tang [ST01] analyzed the simplex algorithm and argue its effectiveness

under this analysis framework. In a recent work, Makarychev and Makarychev [MM20] extend

the notion of smoothed analysis by defining a notion of certified algorithms. In certified algo-

rithms, they allow an input instance to perturb itself (need not be bounded and random), and

the algorithm returns an optimal solution (certificate) to the perturbed instance.

Another systematic approach (this is the one we consider in this thesis) is to study the

problem in various random and semi-random models. Here, one starts with solving the problem

for random instances (for graph problems, this is often Gn,p Erdős-Rényi graphs). In an Erdős-

Rényi graph, for each pair of vertices, an edge is added independently with probability p.

The analysis in random instances is often much simpler, and one can give algorithms with

“good” approximation guarantees. As a running example, we consider the largest independent

set/clique problem. The worst-case instance of the problem has an inapproximability result

of n1−ε for any ε > 0. However in Gn,p model, the size of largest clique can be shown to be

close to (2± o(1)) log1/(1−p) n with high probability. A simple greedy algorithm [GM75], which

considers vertices in an arbitrary order and tries to add them to “clique so far”, can be analyzed

to show that it gives a 2-approximation with high probability3. Curiously, improving upon this

factor of 2 is a major open problem [Rou21].

The next goal in this direction is to plant a solution that is “clearly optimal” in an am-

bient random graph and then given an algorithm to recover this planted solution. We, there-

fore, build towards the worst-case instances of the problem by progressively weakening our

assumptions. This is called planted solution model or random planted model. In the planted

clique/independent set problem we plant a clique/independent set of size k in an otherwise

random Gn,p graph. By planting a clique we mean that the we select an arbitrary set of vertices

S and add an edge between every pair of vertices in S × S. The work [AKS98] presents an

algorithm, which, given a graph G ∼ Gn,1/2 with a planted clique/independent set of size k,

recovers the planted clique when k > c1

√
n (where c1 is a constant). Such planted solution

2A weaker notion of stability (γ, δ)-stable allows the new optimal to be within a factor of δ from the optimal
value of the original instance.

3Since there is a non-zero probability of “hard” instance being generated by such probabilistic model, the
guarantees will always be of this form.

2

models have been studied in the context of other problems as well. We study our problems in

a similar planted solution model defined as follows.

Definition 1.1 (Planted solution model) Given n, k, p, our graph with planted structure is

constructed as follows,

1. Let V be a set of n vertices. Fix an arbitrary subset S ⊂ V such that |S| = k.

2. Add edges arbitrarily in the graph induced by S such that it has the planted structure.

3. For each pair of vertices in S × (V \ S), add an edge independently with probability p.

4. For each pair of vertices in (V \ S)× (V \ S), add an edge independently with probability

p.

Figure 1.1: Planted solution model Definition 1.1 (left) and Algorithm’s view (right).

These models, however, are not realistic since real-world graphs are not random. The

algorithms developed in such models are not robust and have little hope of generalizing to real-

world instances. Models stronger than planted solution models have also been considered for

the clique problem. A key idea towards making these models robust was proposed by Blum and

Spencer [BS95], which is to allow an adversary to modify the graph. The adversary’s actions

have to be limited since otherwise, it can convert the graph to a worst-case instance of the

problem. A reasonable assumption is that the adversary should respect the planted solution.

This is accomplished by allowing only monotone adversaries, which can either add or delete

edges but not both. At the outset, these may seem to be more like allies, but the analysis

for algorithms based on degree concentration [Kuc95] and spectral algorithms [AKS98] is not

3

known to work under presence of such adversaries. In this way, such adversaries encourage the

design of robust algorithms that could generalize to real-world instances. For the independent

set problem, the work [FK00] showed independent set can still be recovered for k = Ω (
√
n)

under the presence of a certain kind of an adversary. However, this now requires to appeal to

the power of semidefinite programming (SDP). The [FK00] model also called as the sandwich

model, is one such adversarial model and is defined as,

Definition 1.2 (Sandwich model) Given n, k, p, our graph with planted structure is con-

structed as follows,

1. Let V be a set of n vertices. Fix an arbitrary subset S ⊂ V such that |S| = k.

2. Add edges arbitrarily in the graph induced by S such that it has the planted structure.

3. For each pair of vertices in S × (V \ S), add an edge independently with probability p.

4. For each pair of vertices in (V \ S)× (V \ S), add an edge independently with probability

p.

5. Allow a monotone adversary to add edges between pairs of vertices in (V \ S) × (V \ S)

and S × (V \ S).

The action of monotone adversary has to be defined appropriately such that the planted solution

remains optimal, e.g., for the independent set problem, the monotone adversary is only allowed

to add edges.

The work [FK01] introduced a strong semi-random model (referred to as the Fiege and

Kilian model), and gave recovery algorithms for various problems in this model.

Definition 1.3 (Feige-Kilian [FK01] model) Given n, k, p, our graph with planted struc-

ture is constructed as follows,

1. Let V be a set of n vertices. Fix an arbitrary subset S ⊂ V such that |S| = k.

2. Add edges arbitrarily in the graph induced by S such that it has the planted structure.

3. For each pair of vertices in S × (V \ S), add an edge independently with probability p.

4. Allow a monotone adversary to add edges between pairs of vertices in (V \ S) × (V \ S)

and S × (V \ S).

4

Figure 1.2: Constructing [FK01] model for Independent set problem.

The key point to note here is that (V \ S) × (V \ S), a large portion of the graph, is entirely

under the control of an adversary. In fact, the way we have defined recovery, it is information-

theoretically impossible to recover the planted structure for k ≤ n/2. However, as we will

see, for k = o(n) we can still solve the problem by some weak and reasonable assumptions on

V \S or by relaxing our notion of recovery. The work [MMT20] shows that one can recover the

planted clique for k = Ωp

(
n2/3

)
4 where they relax the notion of recovery and allow an algorithm

to output n independent sets instead of one, and give high probability guarantees that at least

one of them is the planted set. We also study our problems (discussed in Section 1.3) in [FK01]

model and semi-random models inspired by the [FK01] model.

For planted cliques, a lot of work has been done in the special case of p = 1/2. However,

people have studied other problems such as the planted bisection problems [FK01], and exact

recovery problems in SBM [ABH16] in p = o(1) regimes. Therefore, for the problems we

consider, we also aim to solve in p = o(1) regimes. We refer to the book [Rou21] for a more

detailed discussion of these models in the context of other problems like planted clique, planted

bisection, k-coloring, Stochastic Block Models, and Matrix completion problems.

1.2 Graph problems in semi-random models

A wide variety of random graph models and their relaxations have been a rich source of algo-

rithmic problems on graphs.

Coloring problems: Alon and Kahale [AK97] sharpened the results of Blum and Spencer

[BS95] and gave algorithms that recover a planted 3-coloring in a natural family of random 3-

4Ωp hides poly (1/p) factors.

5

colorable instances. The work [FK01] combines the SDP from [AK97] with hyperplane rounding

and solves the problem for k-colorable graphs (where k is a constant) and a large range of p in

the [FK01] model. The work [CO07] extends this to k = O (
√
n) and a large range of p in a

similar semi-random model. The work [KLT17] showed how to recover a 3-coloring when the

input graph is pseudorandom (has some mild expansion properties) and is known to admit a

random like 3-coloring. In the work [DF16], they propose a hosted coloring framework which

generalizes other semi-random models by considering random/adversarial choices for the host

graph and planted solution. They extend the [AK97] algorithm to work even when the host

graph is a d-regular expander graph.

Independent set/planted clique problem: The Feige-Kilian model [FK01] is one of the

strongest semi-random models. In [FK01], they also give recovery algorithms for planted clique,

planted k-colorable, and planted bisection problem in this model. In [MMT20], they give a

recovery algorithm for the independent set problem for k = Ωp

(
n2/3

)
and large range of p. The

work [KLP21] generalizes these results to r-uniform hypergraphs for k = Ωp

(
n(r−1)/(r−0.5)

)
and

a large range of p in this model.

Graph partitioning problems: There are other works that study graph partitioning prob-

lems in various random and semi-random models. Recovering k planted clusters/communities

in a random graph is a popular graph partitioning model also called Stochastic Block Models

(SBM). Starting from the work [HLL83], there has been a large body of work studying algo-

rithms for these models [Bop87, SN97, MNS12, ABH16, CZ20], to state a few. For k = 2, the

problem is known as planted bisection model, which was also studied in the work [FK01] in a

semi-random model.

The works [MMV12, MMV14b] study a variety of graph partitioning problems such as

Multi cut, Sparsest cut, Balanced cut, Uncut, and Small Set Expansion in a semi-random

model equivalent to the [FK01] model. They also give bi-criteria approximation algorithms for

a large range of parameters. The works by Louis and Venkat [LV18, LV19] study the problem

of balanced vertex expansion and balanced k-way edge expansion in semi-random models.

Densest k-subgraph problem A host of work has been done in various random and semi-

random models for the more general densest k-subgraph problem. The works by Hajek, Wu,

and Xu [HWX16a, HWX16b, HWX16c] study the problem when the planted dense subgraph

is random and gives algorithms (in some range of parameters) for exact recovery using SDP re-

laxations. They complement these results by providing information-theoretic limits for regimes

where recovery is impossible. The work by [BCC+10] studies this problem when the planted

graph is arbitrary. They analyze an SDP-based method to distinguish the dense graphs from

6

the family of Gn,p graphs when k ≥
√
n. The work [KL20] studies the problem of d-regular

densest k-subgraph in some semi-random model and gives a partial recovery algorithm for some

regimes of d, k, n, p.

1.3 Our Contributions

In this thesis, we study three problems where the task is of finding the largest induced subgraph

in a given graph. We study these problems in planted solution model, sandwich model and semi-

random models.

• Largest induced planar subgraph problem

Given a graph G = (V,E), the problem asks to find the largest induced planar subgraph of

G. We study this problem in the planted solution model constructed as per Definition 1.1

where the planted structure is an arbitrary planar graph. We give an algorithm which

returns a list of nO(1/p) sets, one of which is exactly the planted planar graph in this model

for k = Ωp (
√
n).

• Odd Cycle Transversal (largest induced bipartite subgraph) problem

Given a graph G = (V,E), the problem asks to find the largest induced bipartite subgraph

of G. We start by studying the problem in planted solution model as per Definition 1.1

where the planted structure is a d-regular balanced bipartite subgraph. For k = Ωp (
√
n)

and a large range of p, we give an algorithm that recovers the planted bipartite graph

exactly w.h.p. The running time of this algorithm is exponential in the number of small

eigenvalues (smaller than −d/2 + 2
√
n) of the adjacency matrix of the graph induced on

S.

For many special classes of instances such as, (i) when the probability p = Ω (1), (ii)

when the planted graph is a complete bipartite graph (this is called the balanced biclique

problem), (iii) when the planted bipartite graph is random or (iv) more generally when

the planted graph is a d-regular expander graph; the number of these small eigenvalues

is a constant. Therefore, this already gives us a polynomial-time algorithm.

However, we attempt to develop an algorithm for an arbitrary d-regular bipartite graph

in a semi-random model inspired by the [FK01] model. Our semi-random model (refer

Chapter 3 for details) also captures the sandwich model and the planted solution model.

For k = Ωp

(√
n log n

)
and a large range of p, we give a polynomial time algorithm that

recovers the planted bipartite graph exactly w.h.p.

• Maximum independent set in r-uniform hypergraphs

7

Given a r-uniform hypergraph, the problem asks to find the largest independent set (a

set where no hyperedge is completely contained inside the set). We study the problem

in [FK01] model with the notion of recovery as per [MMT20] where they output an

independent set of size (1− ε) k for any ε ∈ (0, 1). For k = Ωp

(
n(r−1)/(r−0.5)

ε1/(r−0.5)

)
and a

large range of p, we give a polynomial time algorithm that outputs an independent set of

size (1− ε) k w.h.p. The result here is the generalization of analogous results for graphs

given by [MMT20].

We note that for all these problems, the worst-case instance of the problem is NP-hard. This

follows from a seminal result by [Yan78], which shows that for a broad class of graph problems

that have a structure which is hereditary on induced subgraphs; the problem of finding such a

structure is NP-Complete. A graph property is called hereditary if it is inherited by all induced

subgraphs. Therefore, planarity, bipartiteness, and independent set are hereditary properties,

and hence the respective problems are NP-hard. We discuss further intractability for these

problems in relevant chapters.

We note that as a special case to these problems when the planted structure is an empty

graph5 (has no edges), the problem reduces to recovering a planted independent set and we do

not expect efficient algorithms for k = o (
√
n) due to [FGR+13, BHK+16].

1.4 Organisation

In Chapter 2, we provide relevant background on various techniques used in this thesis. In

Chapter 3, we study the Odd Cycle Transversal or equivalently the largest induced bipartite

subgraph problem in planted solution model, sandwich model and a semi-random model inspired

by [FK01]. Chapter 4 discusses the problem of finding the largest independent set in r-uniform

hypergraphs where the hypergraph is constructed as per [FK01] model. In Chapter 5, we discuss

the problem of the largest induced planar subgraph and study it in the planted solution model.

Finally, we conclude with some open problems in Chapter 6.

5The empty graph is a valid planar graph, a valid bipartite graph as well as a valid independent set

8

Chapter 2

Preliminaries

In this chapter, we give a brief discussion on the tools typically used for tackling problems in

this area. We start with establishing the notation in Section 2.1 and some relevant facts from

linear algebra and probability in Section 2.2. In Section 2.3, we present some fundamental

results in the Perturbation Theory of matrices. We will focus on symmetric matrices since the

adjacency matrix arising out of graphs1 we study are symmetric. Also, we will mention some

fundamental results for random matrices. In Section 2.4, we touch upon various aspects of

Semidefinite programs. We discuss how an SDP relaxation is related to a vector relaxation of

the program, also called the Vector program (VP). We give another viewpoint of SDP as an LP

trying to enforce moment constraints, and this viewpoint can be generalized to higher degree

terms and thus achieving higher-order SDP relaxation. This is known as the Lasserre/Sum-of-

squares(SOS) hierarchy relaxation, and we discuss it in its own right in Section 2.4.3.

We note that the discussion of these topics is not comprehensive and is only intended to

aid understanding of the usage of these tools in upcoming chapters. For a detailed and more

exhaustive discussion on these topics, we refer the reader to standard textbooks in respective

areas. Our treatment in this chapter for Perturbation Theory is based on the book [Ver18],

for SDP is based on the books [BV04, WS11], and for Lasserre/SOS hierarchy, we refer to

the survey [Rot13] and the monograph [FKP19]. We start with the following notation used

throughout this thesis.

2.1 Notation

• [M]n×n denotes a matrix M of size n × n. For some set of indices R1, R2 ⊆ [n], MR1×R2

denotes a matrix of size n× n constructed out of matrix M of size n× n by copying the

1We will always assume, unless explicitly stated, that the graph is undirected.

9

entries for (i, j) ∈ R1 ×R2 and setting rest of the entries to be 0.

• M |R1×R2
denotes the matrix of size |R1|× |R2| constructed from a matrix M of size n×n

by taking rows corresponding to R1 and columns corresponding to R2.

• E (U, V) for some sets U, V denotes the set of edges going between the sets U and V .

• N(i) denotes the set of vertices in the neighborhood of the vertex i.

• All vectors are denoted with a bold typeface.

• For vectors x,y when we say x ≥ y we mean entry wise xi ≥ yi.

• 1 denotes a vector which has 1 in all it’s entries and 1S denotes the support/indicator

vector where the ith is 1 for i ∈ S and 0 otherwise.

• For any matrix A, the eigenvalues of A are ordered as λ1 (A) ≤ λ2 (A) ≤ . . . ≤ λn (A). We

will drop the matrix A when it is clear from the context. Also the eigenvectors denoted

as v1,v2, . . . ,vn will assumed to be sorted by their corresponding eigenvalue.

• 〈A,B〉 is denotes the standard inner product of two matrices of same size An×n and Bn×n

and 〈A,B〉 =
∑

1≤i,j≤n
AijBij.

2.2 Linear Algebra and Probability

We state a few useful facts from Linear Algebra and probability that will be useful to review

for upcoming chapters of this thesis.

2.2.1 Linear Algebraic Facts

Fact 2.1 (Variational characterstic of eigenvalues) For a given symmetric matrix [A]n×n,

λ1 = min
x∈Rn

xTAx

xTx
and λn = max

x∈Rn
xTAx

xTx

The term
(
xTAx

)
/xTx is also called the Rayleigh quotient of a vector x with matrix A. The

spectral norm of a matrix (denote by ‖A‖2) is defined as,

‖A‖2 = max
x 6=0

‖Ax‖
‖x‖

= max {|λ1| , |λn|}

10

2.2.2 Probabilistic Inequalities

Fact 2.2 (Hoeffding Bound, Theorem 4.14 - [MU17]) Let X1, . . . , Xn be independent ran-

dom variables with E [Xi] = µi and P [ai ≤ Xi ≤ bi] = 1 for constants ai and bi. Then,

P

[∣∣∣∣∣
n∑
i=1

Xi −
n∑
i=1

µi

∣∣∣∣∣ ≥ ε

]
≤ 2 exp

(
−2ε2∑n

i=1 (bi − ai)2

)

Fact 2.3 (Chernoff bound (Multiplicative); Theorem 4.4 (Part 2) - [MU17]) Consider

X1, X2, . . . , Xn be i.i.d. bernoulli variables such that µ = E[
∑n

i=1Xi]. Then for any δ ∈ (0, 1),

P

[
n∑
i=1

Xi ≤ (1− δ)µ

]
≤ exp

(
−µδ

2

2

)
.

2.3 Perturbation Theory

Given two symmetric matrices A and B, a fundamental result which is considered as a triangle

inequality for matrices, relates the eigenvalues of A and A+B as,

Fact 2.4 (Weyl’s inequality) Let A and B be n × n symmetric matrices with eigenvalues

denoted by λ1(A), . . . , λn(A) and λ1(B), . . . , λn(B) respectively, then the eigenvalues of A + B

(denoted by λi(A+B),∀i ∈ [n]) are bounded as,

λi(A) + λ1(B) ≤ λi(A+B) ≤ λi(A) + λn(B) .

However, often it is of more interest as how the eigenvectors of A behave under the effect of

a perturbing matrix2 B. This can be studied using the framework of the Davis-Kahan theorem,

originally proved in the work [DK70]; however, we will use the version presented in Theorem

4.5.5 in [Ver18].

Fact 2.5 (Davis-Kahan Theorem) Let A be an n × n symmetric matrix with eigenvalues

λ1, . . . , λn and eigenvectors u1, . . . ,un respectively. Let B be another n× n symmetric matrix.

Consider M = A + B and let it’s eigenvectors be v1, . . . ,vn respectively. Let θi be the smaller

angle between the vectors ui and vi then,

sin θi ≤
2 ‖B‖

minj 6=i |λi − λj|
.

2We will use the expression “perturbation matrix” to qualitatively express that a matrix is considered/desired
to be small e.g have a small norm

11

For our model in Definition 1.1, we can express it’s adjacency matrix A as,

A = AS×S + (A− AS×S)

= AS×S + E[A− AS×S] +R (We define Rij = Aij − E[Aij])

= AS×S + p
(
11

T − 1S1TS
)

+R (2.1)

whereAS×S represents the matrix corresponding to the planted graph. The term p
(
11

T − 1S1TS
)

is the expected adjacency matrix corresponding to A−AS×S, since in our model we have an edge

independently with probability p. The way we define R in eq. (2.1), it’s a perturbation matrix

for the matrix corresponding to the random part of graph. Since our other models (discussed in

Section 1.1) are also built upon random graphs, the family of random matrices is of particular

interest to us. The work [Wig58] studied the distribution of eigenvalues for random matrices.

Here we present a fundamental result which is informally called the Wigner’s theorem; we will

use a similar version from the work [Vu07]. Let A denote the adjacency matrix of the resulting

graph.

Claim 2.1 For the matrix R as defined in eq. (2.1) we have ‖R‖ ≤ 2
√
n holds almost surely.

Proof: R is symmetric random matrix, and the entries Rij are given as Rij = Aij − E[Aij].

Rij’s can be treated as independent3 random variables which are bounded between −1 and 1,

that have expected value 0 and variance p (1− p) ≤ 1/4. Now using hence by Theorem 1.1 in

the work [Vu07] we have ‖R‖ ≤ 2
√
n holds almost surely. 2

Remark 2.1 If the perturbation matrix B in Weyl s inequality (Fact 2.4) is a random matrix

(corresponding to a random graph), the eigenvalues are shifted only by ±2
√
n i.e λi (A+B) ∈

[λi (A)− 2
√
n, λi (A) + 2

√
n] almost surely.

2.4 Semidefinite Programming (SDP)

2.4.1 Different facets of SDPs

Conic programs and Semidefinite programs: In this section we will discuss Semidefinite

programs (SDP), a broad class of convex optimization problems. A convex optimization problem

is an optimization problem which consists of a convex objective function to be optimized over a

set of convex constraints (called the feasible set). Perhaps, the most well known class of convex

3Since Aij ’s were independent in our model.

12

optimization problems is a Linear Program (LP), where the task is to optimize a linear function

over linear inequalities (that form polytope as the feasible convex set).

A more general and useful class of convex programs is a conic program which can be repre-

sented (in vector form) as,

Conic Program 2.1

min cTx

subject to

Ax = b (2.2)

x ∈ K . (2.3)

where the objective function is linear but the feasible set K is a convex cone. We recall that a

set K is called a convex cone if

α1x1 + α1x1 ∈ K,∀x1,x2 ∈ K and ∀α1, α2 ≥ 0 .

SDP is a special class of conic programs where the convex cone K is a set of positive

semidefinite matrices4. SDP’s capture a variety of constraints including linear inequalities,

inequalities with quadratic terms and second order cone constraints.

SDP in Combinatorial optimization: In combinatorial optimization, we are interested

in integer programs and therefore SDP arise as a natural convex relaxations to these integer

programs. As an example, we consider the MAX-CUT problem, where given a graph G = (V,E)

the objective is to find a cut (S, V \S) that maximizes the number of edges cut. The MAX-CUT

problem can be naturally expressed as an integer quadratic program,

QP 2.1

max

∑
{i,j}∈E (xi − xj)2

4

subject to

xi ∈ {−1, 1} . (2.4)

Using X = xxT , the quadratic program can be reframed as,

4The geometric shape of the cone of SDP matrices is known as spectrahedron in optimization literature

13

SDP 2.1 (rank constrained non-convex SDP form)

max
〈L,X〉

4

subject to

X � 0 (2.5)

〈X,Bi〉 = 1, ∀i ∈ [n] (2.6)

rank (X) = 1 . (2.7)

where Bi is a matrix which is 1 in (i, i) entry and 0 elsewhere, and L is the Laplacian matrix

of the graph, i.e, L = D − A where D is a diagonal matrix having entry Dii as the degree of

vertex i and A is the adjacency matrix of the graph. We note that as written above, SDP 2.1

is just a reformulation of QP 2.1 using matrix entries as decision variables. Formally, this is

not an SDP because of the non-convex rank constraint5 which makes solving such a problem

NP-hard in general.

SDP in matrix form: Now dropping the non-convex rank constraint, we obtain a set of

p.s.d matrices as a feasible set and these form a convex cone. The resulting program is called

an SDP in matrix form (dual of the form in Conic Program 2.1). Next, we present a geometric

viewpoint, where we consider a different way to relax the same quadratic program.

Vector Programs: Another way to relax QP 2.1 above, is by relaxing xi to be a d-dimensional

vector xi. The product terms xixj can be written as inner product/norms. Thus, for our MAX-

CUT QP 2.1 we obtain a vector program as,

VP 2.1

max
1

4

∑
{i,j}∈E

(1− 〈xi,xj〉)

subject to

‖xi‖2 = 1, ∀i ∈ V . (2.8)

Now we replace the term 〈xi,xj〉 by a place holder variable yij. Thus we obtain a LP (linear

program) in these new variables yij’s, which can be efficiently solved. However, as such, this

would be a relaxation of a relaxation since we didn’t enforce the yij’s to be of the form 〈xi,xj〉.
5In optimization literature these are called rank constrained SDPs.

14

To enforce this, we arrange the variables yij’s in a matrix Y = [yij]n×n and add the constraint

that Y = XXT where X is an n × d matrix with rows as vectors xi’s. We recognize that the

form Y = XXT is a characterization of p.s.d. matrices, and hence one obtains an SDP of form

SDP 2.1 without the rank constraint.

We are not done yet, since rank (Y) = min {n, d} and hence for d < n, we need to add this

rank constraint. However, this can be avoided if we choose d ≥ n i.e. relax xi to n-dimensional

vector. Therefore, it shows that the convex program we obtain by relaxing xi to n-dimensional

vectors is equivalent to our earlier relaxation of SDP in matrix viewpoint.

Generalizing from this MAX-CUT example, formally we write a Vector Program as a linear

program over the dot product as,

VP 2.2

min
n∑
i=1

n∑
j=1

Cij 〈xi,xj〉

subject to

n∑
i=1

n∑
j=1

Aij 〈xi,xj〉 = b (2.9)

A,C � 0 . (2.10)

Moment viewpoint A yet another way of relaxing the quadratic program of the form QP 2.1

is by replacing the terms xixj by a single term yij. This way one obtains an LP in the variables

yij’s but again we need to enforce the constraint that yij = xixj. This constraint is called the

moment constraint and here the relaxation idea is to try and enforce this non-linear moment

constraint by a system of linear constraints. This can be systematically done by considering

that (∑
cixi

)2

≥ 0,∀ci ∈ R (2.11)

and we replace the occurrence of the product terms xixj in eq. (2.11) by yij. Once again

arranging yij’s in a matrix Y , the condition above can be rewritten as cTY c ≥ 0 for all c ∈ Rn.

We recall that this is a yet another characterization of p.s.d. matrices. Therefore, we again

obtain an SDP of the form SDP 2.1 without the rank constraint.

It is also evident from this form that why an SDP can be solved efficiently. It is because

after the relaxation, we is just have an LP. Further, the ellipsoid algorithm for solving LP’s

requires a separation oracle when a constraint is violated. This separation oracle is in the

15

form of a hyperplane that separates the feasible region from the region where the constraint

is valid. If the constraints were themselves linear (as in an LP), the separation oracle would

be the violating constraint itself. For the set of p.s.d matrices, the vector c (which has to

exist) such that cTY c < 0 acts as such a hyperplane. In fact, since the eigenvalues of a p.s.d

matrix are all non-negative, a violating constraint means a negative eigenvalue. The eigenvector

corresponding to this negative eigenvalue gives us a separation oracle for non-p.s.d. matrices.

2.4.2 SDP Duality

Similar to Linear Program(LP), taking the dual of an SDP is a useful technique that provides

an explicit certificate for optimality. The dual program is computed by taking the Lagrangian

and computing the Lagrange dual function (refer [BV04] for details). Since the cone of p.s.d

matrices is self-dual, the dual program for an SDP is an SDP itself. The weak duality, like

for other convex programs, follows from the construction of the Lagrangian. However, unlike

LP, strong duality doesn’t always hold for an SDP. The dual SDP needs to satisfy a set of

conditions called constraint qualifications, for strong duality to hold. Slater’s condition is one

such widely used criteria, and we refer to the book [BV04] for these details.

SDP 2.2 (Primal)

min 〈C,X〉

subject to

〈Ai, X〉 = bi,∀i (2.12)

X � 0 . (2.13)

SDP 2.3 (Dual)

max 〈b,y〉

subject to

Y = C −
∑
i

yiAi (2.14)

Y � 0 . (2.15)

The dual variables yi correspond to the constraint in eq. (2.12) and Y corresponds to

eq. (2.13). As discussed earlier, for combinatorial optimization problems, the SDP is typically

written as a relaxation to an integer program with a specific intended solution. The intended

solution (say u) corresponds to a primal feasible solution X = uuT . For many problems, we

aim to show that the optimal primal solution is indeed the integral solution.

Fact 2.6 The primal solution X = uuT is the unique solution to the SDP 2.2 if there exists a

Y such that it satisfies constraints in SDP 2.3, with 〈C,X〉 = bTy, and has rank(Y) = n − 1

(i.e. λ2 (Y) > 0).

16

Proof: This is a folklore statement, and a proof of it can be found in Lemma 2.3 of [LV18].

2

2.4.3 Lasserre/Sum-of-squares(SOS) hierarchy

A yet another approach to relax QP 2.1 is by considering it as a system of polynomial inequalities

and convexifying the set of feasible solutions by a set of probability distributions. The space

of probability distribution is R2n and, therefore, intractable as such. A natural relaxation is to

only look at space of distributions in R2r where r is a constant. This is what rth level moments

of this distribution let us do. Our moment approach for SDP in Section 2.4.1 can be thought

as doing this where Yi = E [xi] and Yij = E [Xij]. The moment terms and the sum-of-squares

constraint in eq. (2.11) can be generalized to r-tuples to give a similar SDP relaxation. This

relaxation is called level-r Lasserre/Sum-of-squares (SOS) relaxation.

2.5 SDP/Lasserre hierarchies in approximation algorithms

Since the breakthrough result of Goemans and Williamson [GW95], SDP has been widely used

in approximation algorithms, the works [FG95, KMS98, ARV04] etc. are a few notable ones.

SDP has also been the tool of choice for exact recovery in semi-random models. Starting

from the fundamental works of exact recovery for the planted clique problem [FK00], for the

planted bisection problem [FK01], for Stochastic Block Models [ABH16] etc., and many of

the works mentioned in Section 1.2 are based on SDP relaxations. A natural way to analyze

these SDP relaxations is by constructing an optimal dual solution to prove the integrality of

the primal relaxation. This idea has been explored in the works of [FK01, CO07, BCC+10,

ABBS14, ABH16, LV18], to state a few. We note that the task of constructing an optimal dual

solution is problem-specific, and there is no generic way of doing this.

The Lasserre/SoS hierarchy is a strengthened SDP relaxation for nonlinear 0− 1 programs

attributed to the works of Shor [Sho87], Nesterov [Nes00], Jean B. Lasserre [Las01] and Parrilo

[Par03]. We refer the reader to the survey by Thomas Rothvoß [Rot13] for a detailed discussion.

The Lasserre/SoS hierarchy has been used in variety of works [Chl07, CS08, HSS15, HSSS16,

HKP+17, KS17b] etc to yield state of art algorithms.

17

Chapter 3

Odd Cycle Transversal Problem

In this chapter we will study the Odd Cycle Transversal problem or equivalently the largest

induced bipartite subgraph problem in semi-random models.

Problem 3.1 Given a graph G = (V,E), the Odd Cycle Transversal (OCT) problem asks to

find the smallest set S ⊆ V such that S has a non-empty intersection with every odd cycle of

the graph.

Removing these set of vertices S will result in a bipartite graph, and hence this problem

is equivalent to finding the largest induced bipartite graph. Given a graph G = (V,E), the

problem of finding the largest induced bipartite subgraph of G is well known to be NP-hard

(shown in [Yan78]). The problem is also related to the balanced biclique problem, where the

task is that of finding the largest induced balanced complete bipartite subgraph. This problem

has a lot of practical application in computational biology [CC00], bioinformatics [Zha08] and

VLSI design [AM99].

Models and results

We now present our semi-random model which we call threshold semi-random model. The model

is inspired from the [FK01] model (Definition 1.3) and generalizes the planted solution model

(Definition 1.1) and the sandwich model (Definition 1.2).

Definition 3.1 (Threshold Semi-random model) Given n, k, d, p, our planted bipartite graph

is constructed as follows,

1. Let V be a set of n vertices. Fix an arbitrary subset S ⊂ V such that |S| = k.

2. Add edges arbitrarily in the graph induced by S such that the resulting graph is a connected

d-regular bipartite graph. Let S1, S2 denote the bipartite components.

18

Figure 3.1: Planted solution model Definition 1.1 (left) and threshold semi-random model
Definition 3.1 (right).

3. For each pair of vertices in S × (V \ S), add an edge independently with probability p.

4. Add edges in (V \ S)×(V \ S) such that smallest eigenvalue of
(
A(V \S)×(V \S) − p1V \S1TV \S

)
is greater than − ((1/2− α)/(1/2 + α)) d where α is a small 1 positive constant (through-

out this chapter we assume α ≤ 1/6).

5. Allow a monotone adversary to add edges in (V \ S)× (V \ S) arbitrarily.

Remark 3.1 Note that although it is not explicitly mentioned in the model construction, we

will have |S1| = |S2| since the graph induced on S is a d-regular bipartite graph.

In [FK01] model, item 4 allows for any arbitrary graph in (V \ S)×(V \ S) (no assumptions

on the graph induced on V \ S). However, with no further assumptions on V \ S, even for the

special case of our problem i.e. planted independent set problem (d = 0), the best known

algorithm in [FK01] model due to [MMT20] works only for k = Ωp

(
n2/3

)
. However, our

benchmark2 is k = Ω (
√
n) and hence we look at a model with stronger assumptions than the

[FK01] model.

A reasonable assumption to have is that the graph induced on V \ S should not be close to

having any induced bipartite subgraphs of degree at least d. Informally speaking, we want the

graph induced on V \S to stand out from the planted graph on S. Our condition in item 4 can

1Note that the smaller the value of α, the weaker is this assumption.
2We refer to the proof overview for an explanation of setting this as a benchmark.

19

be interpreted as a way towards achieving this. If the smallest eigenvalue of the graph3 induced

on V \ S is greater than −d/2, then the graph is indeed far from having an induced bipartite

subgraph in V \ S of smallest degree d. We can argue this by contradiction since otherwise,

consider a vector with value 1 for one side of the alleged bipartition and −1 on the other side

and 0 elsewhere achieves a Rayleigh Quotient of value −d. Using Fact 2.1, this implies that

the smallest eigenvalue is ≤ −d contradicting that the smallest eigenvalue is at least −d/2.

Remark 3.2 The threshold semi-random model in Definition 3.1 also captures the planted

solution model in Definition 1.1; since in the case when V \S is chosen to be a G(n−k),p ran-

dom graph,
(
A(V \S)×(V×S) − p1V \S1TV \S

)
= A(V \S)×(V \S) − E

[
A(V \S)×(V \S)

]
, and therefore the

smallest eigenvalue of
(
A(V \S)×(V×S) − p1V \S1TV \S

)
is greater than −2

√
n (as follows from

Claim 2.1).

We present our first result (details in Section 3.1) where we study the problem in planted

solution model (Definition 1.1) and we give the result below.

Theorem 3.1 (Informal version of Theorem 3.3) For a fixed k, p satisfying k = Ωp (
√
n)

and p = Ω
(√

log k/k
)

, there exists a deterministic algorithm that takes as input an instance

generated as per planted solution model (Definition 1.1), and recovers the arbitrary planted set

S exactly with high probability (over the randomness of the input) in time exponential in the

number of small eigenvalues of the adjacency matrix (eigenvalues smaller than −d/2 + 2
√
n) of

the graph induced on S.

Remark 3.3 For many special classes of instances such as, (i) when the probability p = Ω (1),

(ii) when the planted graph is a complete bipartite graph like in the balanced biclique problem (iii)

when the planted bipartite graph is random, or (iv) more generally when the planted graph is a

d-regular expander graph; the number of these small eigenvalues is a constant and Theorem 3.1

allows efficient recovery (running time of the algorithm is polynomial in n).

We will then proceed to present our main result (details in Section 3.2), which holds for

both the planted solution model and the threshold semi-random model.

Theorem 3.2 (Informal version of Theorem 3.4) For a fixed k, p sastisfying k = Ωp

(√
n log n

)
,

and p = Ω (log k/k)1/6, there exists a deterministic algorithm that takes as input an instance

generated by threshold semi-random model (Definition 3.1), and recovers the arbitrary planted

set S exactly, in polynomial time and with high probability (over the randomness of the input).

3Formally speaking, smallest eigenvalue of the adjacency matrix in item 4.

20

Related Works

The optimal long code test by Khot and Bansal [BK09] rules out any constant factor approx-

imation for this problem. On the algorithmic front, casting the problem as a 2-CNF deletion

problem, [AKRR90] gives a reduction to the min-multicut problem. This reduction gives us an

O (log n) approximation due to the work [GVY98], which was further improved to O
(√

log n
)

in

the work [ACMM05]. The work [GL21] gives an efficient randomized algorithm that computes

an induced bipartite subgraph having
(
1− O

(√
ε log d

))
fraction of the vertices where d is the

bound on the maximum degree of the graph. They also give a matching (up to constant factors)

Unique Games hardness for certain regimes of parameters.

The problem is equivalent to finding the largest 2-colorable subgraph of a given graph

and is also known as the partial 2-coloring problem. The work [GLR19] studies the problem

in the Feige-Kilian semi-random model [GLR19], where a 2-colorable graph of size (1− ε)n
is planted. They give an algorithm that outputs a set S′ such that |S′| ≥ (1− εc/p2)n for

p = Ω
(√

log n/n
)

and ε ≤ p2 where c is a positive constant. Their algorithm is a partial

recovery algorithm and works for the regimes when ε is small. We study the problem when

1 − ε is small, and we give complete recovery for a large range of p. However, since our

semi-random model makes stronger assumptions than the [FK01] model, we don’t make any

comparisons.

A related problem is that of finding the largest complete balanced bipartite subgraph called

the balanced biclique problem, which we discuss next.

Balanced biclique problem: In the balanced complete bipartite subgraph problem (also

called the balanced biclique problem), we are given a graph on n vertices and a parameter k,

and the problem then asks whether there is a complete bipartite subgraph that is balanced with

k vertices in each of the bipartite components. The problem was studied when the underlying

graph is a bipartite graph, and shown to be NP-complete by a reduction from the CLIQUE

problem in the works [GJ79, Joh87]. They additionally note that the balanced constraint

is what makes the problem hard. If we remove the balanced constraint, the problem can be

reduced to finding a maximum independent set in a bipartite graph. The latter problem admits

a polynomial-time solution using the matching algorithm. The work [FK04] shows that this

problem of finding a maximum balanced biclique is hard to approximate within a factor of

2(logn)δ for some δ > 0, under the assumption that 3SAT /∈ DTIME
(

2n
3/4+ε

)
for some ε > 0.

Recently, the work [Man17] showed that one cannot find a better approximation than n1−ε,

assuming the Small Set Expansion Hypothesis and that NP * BPP for every constant ε > 0.

A related problem is the maximum edge biclique problem, where we are asked to find whether

21

G contains a biclique with at least k edges. This problem was also shown to be NP-hard in the

work [Pee03].

Given these intractability results for general graphs, there has been some success in special

classes of graphs. In graphs with constant arboricity, the work [Epp94] gives a linear time

algorithm that lists all maximal complete bipartite subgraphs. In a degree bounded graph,

the work [TSS02] gives a combinatorial algorithm for the balanced biclique problem that runs

in time O
(
n2d
)
. Another systematic approach, however, is to consider planted and semi-

random models for the problem. In the work [Lev18], they study the planted version of the

problem, which, they call “hidden biclique problem”. Their model is similar to our model in

Definition 1.1; however, we consider an arbitrary d-regular bipartite graph instead of a complete

bipartite graph. They give a linear-time combinatorial algorithm that finds the planted hidden

biclique with high probability (over the randomness of the input instance) for k = Ω (
√
n).

Their algorithm builds on the “Low Degree Removal” algorithm, due to Feige and Ron [FR10]

which finds planted clique in linear time.

Proof Overview

Benchmarks: We start by noting that the OCT problem is a generalization of the planted

independent set and the planted balanced biclique problem. For d = 0, it reduces to recovering

a planted independent set and hence we do not expect efficient algorithms for k = o (
√
n)

[FGR+13, BHK+16]. For k = Ω (
√
n), both the special cases of the problem, the planted

independent set problem [AKS98, FK00], and the planted balanced biclique problem [Lev18]

admit a polynomial-time recovery algorithm. So it is natural to consider k = Ω (
√
n) as a

benchmark for recovery and look for algorithms in this regime.

The other interesting regime consideration comes by viewing this problem as a special case

of the densest k-subgraph (DkS) problem. In DkS problem (in the planted model setting),

the planted graph is an arbitrary graph that has average degree d and the algorithmic task

is to recover this planted graph. When d � pk, the OCT problem can be viewed as the

densest k-subgraph (DkS), and for d � pk, the OCT problem can be viewed as sparsest

k-subgraph problem (studying the complement of this graph would be an instance of DkS

problem). However, this general DkS problem is information-theoretically unsolvable for d = pk

[CX16]. Therefore we focus our attention on the case when d ≈ pk. So the question we ask

is whether we can use the additional4 bipartite structure of the planted graph to recover the

planted graph in d ≈ pk (including d = pk) regimes.

4additional w.r.t the DkS problem

22

Detecting planted bipartitions: We start by considering the detection version of the prob-

lem in the interesting regimes for this problem i.e. k = Ω (
√
n) and d ≈ pk. We note that

the detection problem i.e. detecting the presence of bipartite graph as constructed in planted

solution model Definition 1.1 against the null hypothesis of Erdős-Rényi graph Gn,p, is easy

when k = Ω (
√
n). Formally one notes that given two distributions

H0 : G ∼ G (n, p) against H1 : G ∼ G (n, k, d, p) as per Definition 1.1,

the test, which outputs H1 when λ1 (G) ≤ −d and H0 otherwise, is correct almost surely for

d ≈ pk and k ≥ c
√
n/p where c > 0 is a large enough constant. This is because for a Gn,p

graph, the smallest eigenvalue is greater than −2
√
n almost surely (from Claim 2.1), while for

a graph with planted bipartite subgraph, the smallest eigenvalue is smaller than −d since the

vector 1S1 − 1S2 already achieves Rayleigh Quotient of value −d (using Fact 2.1).

Spectral Approaches: However, as expected, the exact recovery problem is more challeng-

ing. A natural spectral approach (where we use eigenvalues and eigenvectors), which has been

used for planted models, e.g., [AKS98, McS01], relies on the fact that there is sufficient eigen-

gap to apply results from perturbation theory (as discussed in Chapter 2). However, since the

planted bipartite graph is arbitrary, there can be many eigenvalues close to −d and hence there

is no guarantee of a sufficient eigengap.

A possible approach then is to use all these eigenvectors with eigenvalues close to −d to

recover the planted set. To formalize this, we define the threshold rank of the graph 5

Definition 3.2 For τ ∈ [0, d], we define rank≤−τ (G) = |{i : λi(G) ≤ −τ}|.

We let P =
{
v(1),v(2), . . . ,v(Lτ)

}
(the bottom Lτ vectors) denote the set of eigenvectors of

A|S×S with eigenvalues smaller than the threshold τ where Lτ = rank≤−τ
(
A|S×S

)
. We call

these vectors as τ -threshold rank eigenvectors of A|S×S.

Claim 3.1 For the planted bipartite graph on set S, we have that rank≤−τ
(
A|S×S

)
≤ γpk2

2τ 2 ,

where d = γpk.

Proof: It is a well known fact that the spectrum of bipartite graphs (in our case A|S×S) is

symmetric around 0. Therefore the number of eigenvalues with absolute value greater then or

equal to τ is given by 2 rank≤−τ
(
A|S×S

)
. Using the fact that these eigenvalues are of a d-regular

5We mean adjacency matrix corresponding to the graph.

23

graph and hence lie in the interval [−d, d], we have that,

2τ 2rank≤−τ (A|S×S) ≤
∑
i

λ2
i (A|S×S) ≤

∥∥A|S×S∥∥2

F
= kd .

Hence we have that,

rank≤−τ (A|S×S) ≤ kd

2τ 2 =
γpk2

2τ 2

2

Now we use these threshold rank eigenvectors to recover the planted set by the subspace

enumeration technique, which has been used in the works of [KT07, AG11, Kol11, KLT17].

Here we first identify that the vector u = 1S1−1S2 has a large projection on the space spanned

by τ -threshold rank eigenvectors of A (for choice of τ = −d/2 + 2
√
n). Note that this vector

u identifies the planted set and therefore we call it the signed indicator vector. We then do

a standard ε-net construction (refer [Ver18]) to find a vector y close to u and thus recover a

large fraction of planted set S (Lemma 3.1). We can recover the remaining set of vertices by

an argument due to the work [GLR19] where they distinguish vertices by the size of matching

in induced neighborhoods (Section 3.1.2). Putting all this together, we prove our result in

Theorem 3.3. We describe the details for the subspace enumeration technique in Section 3.1.

The running time of the subspace enumeration approach is exponential in Lτ . Now for a

constant γ we have Lτ = O (1/p) for τ = Ω (pk) (follows from Claim 3.1). Therefore, for many

special classes of instances such as, (i) when the probability p = Ω (1) and γ = Ω(1), (ii) when

the planted graph is a complete bipartite graph (this is the balanced biclique problem) and

γ = Ω(1), (iii) when the planted bipartite graph is random and γ = Ω(1) or (iv) more generally

when the planted graph is a d-regular expander graph and γ = Ω(1); we have Lτ = O (1) and

this already gives us a polynomial-time algorithm. However, the case when γ ≤ 2/3 is fairly

simple and a combinatorial argument can work in those regimes (as we show in Section 3.2.2).

However, as we pointed earlier, we want to solve the problem in p = o(1) regimes. Also, we

want to solve the problem for arbitrary graphs and not just for a special class of graphs. To

accomplish this, we shift our focus to the SDP relaxations.

SDP Relaxation: We consider the following SDP 3.1 relaxation. We construct its dual

SDP 3.2 (refer to Section 3.3.1 for more details on this dual construction).

24

SDP 3.1 (Primal)

min
∑
{i,j}∈E

2 〈xi,xj〉

subject to∑
i∈V

‖xi‖2 = 1 (3.1)

〈xi,xj〉 ≤ 0 ∀ {i, j} ∈ E . (3.2)

SDP 3.2 (Dual)

max β

subject to

Y = A− βI +
∑
{i,j}∈E

Bij (1ij + 1ji) (3.3)

Bij ≥ 0, ∀ {i, j} ∈ E (3.4)

Y � 0 . (3.5)

We denote by X the primal SDP matrix. Let xi denote the vector corresponding to vertex

i such that Xij = 〈xi,xj〉. We consider this feasible integral solution (denoted by X = ggT ,

where g ∈ Rn s.t gi = 1/
√
k for i ∈ S1, gi = −1/

√
k for i ∈ S2 and 0 otherwise) to the SDP by

setting,

xi =


ê/
√
k if i ∈ S1

−ê/
√
k if i ∈ S2

0 otherwise,

(3.6)

where ê is some unit vector. In SDP 3.2, the Lagrange multipliers β and Bij’s are our dual

variables and Y is the dual SDP matrix. By 1ij we mean an indicator matrix which is 1 for

(i, j) entry and 0 elsewhere. For clarity, we will denote
∑
{i,j}∈E Bij (1ij + 1ji) by a matrix

B. Let SDPOPT (G) denote the optimal value of the primal SDP. From the proposed integral

solution we know that SDPOPT (G) ≤ −d. For any feasible solution to the dual SDP 3.2, by

weak duality, we know that β ≤ SDPOPT (G) ≤ −d.

Constructing good dual SDP solutions to certify optimality of Primal: Broadly

speaking, a popular technique in analyzing SDP relaxations (like SDP 3.1) is to show optimality

by constructing a dual solution that matches the SDPOPT (G) value of the primal in a manner

that the dual matrix Y has rank n− 1, (see Fact 2.6). This framework already imposes a list

of conditions which can be used to characterize the dual variables

1. β = −d

2.
〈
ggT , Y

〉
= 0

3. Y � 0

4. λ2 (Y) > 0 .

To meet condition (1), we set β = −d to match the primal objective value of SDPOPT = −d

25

(strong duality objective condition). We expand upon complementary slackness condition (2)

as,

〈
ggT , Y

〉
= gTY g = gT (A+ dI) g + gTBg = 0 + gTBg = gTBg (Using β = −d) .

Therefore, from condition (2), we have∑
i∈S

∑
j∈S
{i,j}∈E

Bij = 0 (3.7)

and since Bij ≥ 0 this implies that Bij = 0 for all (i, j) ∈ E(S1, S2).

For certain problems in semi-random models such as the planted clique problem [FK00],

community detection in SBM [ABH16], these list of conditions above suffices to handcraft

a feasible dual solution. For these problems, one can also show that the handcrafted dual

solution satisfies conditions equivalent to (3) and (4), by typically using some standard results

for random matrix bounds and concentration inequalities. In our setup, imposing condition (3)

requires

λmin (Y) ≥ λmin (A) + d+ λmin (B) . (3.8)

However, if λmin(A) ≤ −d − 2
√
pn (which is possible6), condition (3) may not hold (as per

choice of Bij’s dictated from eq. (3.7)).

Thus, satisfying Constraint (3.8) seems to require more work. Motivated by success stories

in other recovery problems like the planted bisection problem [FK01], coloring semi-random

graphs [CO07], decoding binary node labels from censored edge measurements [ABBS14], and

planted sparse vertex cuts [LV18], one approach may be to construct some sort of dual matrix by

giving “meaning” to the dual variables. Such an approach would work if the planted bipartite

graph were also random. Since random graphs are good expanders, there would only be a

single eigenvector that disobeys eq. (3.8), and we can choose the dual variables constructively

to handle this.

However, for arbitrary graphs, to handle the situation discussed above, we need a more

principled approach to deal with the eigenvectors of the planted graph having eigenvalue close

to −d (note that there can be many such eigenvectors). This is our primary motivation for

defining threshold rank and threshold rank eigenvector as in Definition 3.2.

In Section 3.2 we present our “principled” approach in dealing with the threshold rank

6The smallest eigenvalue from A can be −d and from the rest of graph −2
√
n. Now. using Weyl’s inequality

the only guarantee we have is that the eigenvalue of A is atleast −d− 2
√
n

26

eigenvectors close to −d such that the strong duality still holds.. Our proofs use the spectral

properties of bipartite graphs and random graphs to show the existence of an optimal dual

solution having rank n− 1.

3.1 Exact Recovery using Subspace Enumeration

In this section, we study the problem of exact recovery of a planted bipartite graph in the

planted solution model constructed according to Definition 1.1. We focus on the regimes when

the planted bipartite graph has degree d = γpk and when the planted set has size k = Ωp (
√
n).

We let Lτ be the threshold rank of A|S×S as defined in Definition 3.2 for some choice of threshold

τ . In Section 5.1, we give a procedure to recover (1− δ) fraction of vertices in S for any given

value of δ > 0. Using arguments similar to [GLR19], we can recover the remaining set of vertices

(Lemma 3.5).

Theorem 3.3 For a fixed k, p where k ≥ 256
√
n

γ2p3
and (k/ log k) ≥ 25/p2, and choice of τ =

−d/2 + 2
√
n, there exists a deterministic algorithm which can recover the planted set S in an

instance generated as per planted solution model (Definition 1.1), exactly with high probability

(over the randomness of the input) in time O
(
poly(n)k(Lτ+1)

)
.

We note that the constants in Theorem 3.3 have not been optimized for, and these specific

values are a result of choices we make for ease of calculation.

3.1.1 Partial recovery of the planted set

In this setting, the vector u = 1S1−1S2 , which also indicates the planted set has small Rayleigh

quotient (of value −d). We recall that we had referred to this vector u as the signed indicator

vector for our planted set S. Although u is not an eigenvector for the entire matrix A, we can

still show that it has a large projection on the subspace formed by the bottom Lτ ′ = Lτ + 1

eigenvectors7 (having eigenvalues smaller than τ ′). Therefore we can do a brute force search

in this space via the subspace enumeration technique along the lines of [KT07, AG11, Kol11,

KLT17] and attempt to recover a vector that is close to this signed indicator(distance to the u

is small, see Lemma 3.3) for the planted set. We then use this vector to recover (1− δ) fraction

of the planted set S for any given value of δ > 0 as,

7The term Lτ was earlier defined only for A|S×S but here we use it for the entire A also with the subscript
τ for A|S×S and τ ′ for A respectively. Therefore it should be clear from the context which one we are talking
about.

27

Lemma 3.1 For an instance of planted graph given by the planted solution model (Defini-

tion 1.1) and a parameter δ > 0 in regimes where k ≥ ((8− 2δ) /δγp) 2
√
n, there exists a

deterministic algorithm which can recover at least (1− δ) fraction of the planted vertices in S.

Lemma 3.2 For τ ′ = τ − 2
√
n we have, rank≤−τ ′ (A) ≤ rank≤−τ

(
A|S×S

)
+ 1

Proof: We recall that we let τ to be the threshold for the matrix A|S×S such that Lτ =

rank≤−τ
(
A|S×S

)
. Note that this is also equal to rank≤−τ (AS×S). From here, we relate to

rank≤−τ (A) in a series of steps where we recall that,

A = AS×S − p1S1TS + p11T +R

The −p1S1TS term only affects the 1S eigenvector of AS×S such that the corresponding

eigenvalue is shifted form d to d − pk. Therefore, we have that for the same value of τ as for

AS×S, rank≤−τ
(
AS×S − p1S1TS

)
≤ Lτ + 1, to accommodate for the 1S eigenvector. Next we

consider the perturbation matrix R then we have that for choice of τ ′ = τ − 2
√
n we have that

rank≤−τ ′
(
A|S×S − p1S1

T
S +R

)
≤ rank≤−τ

(
A|S×S − p1S1

T
S

)
.

The choice of τ and τ ′ are such that we account for the shift in eigenvalues due to R since

we know that almost surely ‖R‖2 ≤ 2
√
n (from Claim 2.1). Finally we account for the term

p11T by using Weyl’s inequality (Fact 2.4) where B = p11T and C = A|S×S − p1S1TS , here

λ1 (B) = 0, and we get that,

λ1 (C) ≤ λ1 (C +B) ≤ λ2 (C) ≤ . . . ≤ λn−1 (C +B) ≤ λn (C) ≤ λn (C +B) .

Therefore we have that,

rank≤−τ ′ (A) ≤ rank≤−τ ′
(
AS×S − p1S1TS +R

)
.

Putting everything together we obtain that, rank≤−τ ′ (A) ≤ rank≤−τ
(
A|S×S

)
+ 1 2

Lemma 3.3 Let v(1), . . . ,v(n) denote the eigenvectors of A, then there exists a vector y′ ∈
span

{
v(1), . . . ,v(Lτ ′)

}
such that for a positive constant ρ > 2

√
n and choice of τ ′ = −d/2,

‖y′ − u‖2 ≤ ρk

d/2 + ρ
.

28

Proof: We express the signed indicator vector u in the basis of these eigenvectors (of unit

norm) as,

u = c1v
(1) + . . . cnv

(n) . (3.9)

for some constants c1, . . . , cn. Consider the matrix A′ = A + (d+ ρ) I where ρ is a positive

constant larger than 2
√
n.8 Since the identity matrix only shifts the eigenvalues we have that,

ρ =
uTA′u

uTu
=

(∑
i civ

(i)
)
A′
(∑

i civ
(i)
)

‖u‖2 =

∑n
i=1 (λi (A) + d+ ρ) c2

i

∥∥v(i)
∥∥2

k

≥
(
λLτ ′+1 (A) + d+ ρ

)∑n
i=Lτ ′+1 ci

2

k
. (3.10)

The last inequality uses the fact that the eigenvalues are non-negative; therefore, at this point,

we need that ρ ≥ 2
√
n.

Consider the space spanned by the first Lτ ′ eigenvectors as span
{
v(1), . . . ,v(Lτ ′)

}
. If we

consider the vector y′ = c1v
(1) +. . . cLτ ′v

(Lτ ′) (for the same constants c1, . . . , cLτ ′ as in eq. (3.9)),

by construction it lies in the space spanned by these bottom Lτ ′ eigenvectors of A i.e.,

y′ = c1v
(1) + . . . cLτ ′v

(Lτ ′) belongs to span
{
v(1), . . . ,v(Lτ ′)

}
.

Now if we consider the distance between these vectors we get,

‖y′ − u‖2
=

∥∥∥∥∥∥
n∑

i=Lτ ′+1

civi

∥∥∥∥∥∥
2

=
n∑

i=Lτ ′+1

c2
i . (3.11)

Using our choice of τ ′ = −d/2 in eq. (3.10) and eq. (3.11) we have that,

‖y′ − u‖2
=

n∑
i=Lτ ′+1

c2
i ≤

ρk(
λLτ ′+1 (A) + d+ ρ

) ≤ ρk

d/2 + ρ
.

2

Hence there exists a vector y′ ∈ RLτ ′ , which is close to a vector that indicates the set

S. Next in Lemma 3.4, we show how to find such a y′, whose existence we have argued in

Lemma 3.3. We do so by a brute force search over the space spanned by these Lτ ′ eigenvectors.

We cannot search over the infinite points in the space as such, but we can construct an ε-net

8We shift the matrix so that eigenvalues of A′ are ≥ 0.

29

and choose a value of ε such that we get a point in this space for which the distance to y′ is

smaller than ε.

Lemma 3.4 There exists a deterministic algorithm running in time O
(
kL
′
τ
)

which finds a

vector y ∈ span
{
v(1), . . . ,v(Lτ ′)

}
such that for a value of ρ > 2

√
n,

‖y − u‖2 ≤ 2ρk

d/2 + ρ
.

Proof: We build an ε-net such that for any v ∈ span
{
v(1), . . . ,v(Lτ ′)

}
we have another v′

which belongs to the ε-net and is also close to v such that,

‖v − v′‖ ≤ ε .

For unit norm vectors, the bound on number of points in an ε-net is given by (3/ε)Lτ ′ (Corollary

4.2.13, [Ver18]). Since our vector u has squared norm k, we consider ball of radius k and the

volume is scaled by factor of kLτ
′
.

Since the space is Lτ ′-dimensional the number of points in the space for such an ε-net is

upper bounded by (3k/ε)Lτ ′ (Corollary 4.2.13, [Ver18]). Thus for the vector y′ in Lemma 3.3

we can find a vector y such that,

‖y − u‖2 = ‖(y − y′) + (y − u)‖2 ≤ ‖y − y′‖2
+ ‖y′ − u‖2 ≤ ε2 +

ρk

d/2 + ρ
.

We choose ε2 = ρk/ (d/2 + ρ), and hence ε =
√
ρk/ (d/2 + ρ). Since ρ > 2

√
n and d ≤ k the

number of points (denoted by N) are bounded by,

N ≤
(

3k

ε

)L′τ
=
(

3
√
k
)L′τ (d/2 + ρ

ρ

)L′τ/2
≤
(

3
√
k
)L′τ (

1 +
d

2ρ

)L′τ/2
≤
(

3
√
k
)L′τ (

1 +
k

4
√
n

)L′τ
≤
(

3
√
k
)L′τ (

1 +

√
n

4

)L′τ/2
≤
(

3
√
k
)L′τ (k

2

)L′τ/2
≤ (2k)L

′
τ

(
Using

√
n ≤ k ≤ n

)
.

Therefore the number of points are O
(
kLτ ′

)
. Hence we can construct this ε-net in time O

(
kLτ ′

)
.

2

Proof: [Proof of Lemma 3.1] We wish the distance between y and u to be smaller than δk/2

for any arbitrary choice of δ > 0.

2ρk

d/2 + ρ
=

4ρk

γpk + 2ρ
≤ δk

2
which holds if we choose ρ as ρ ≤ δγpk

8− 2δ
. (3.12)

30

From Lemma 3.3 we know that ρ ≥ 2
√
n, which holds if,

k ≥
(

8− 2δ

δγp

)
2
√
n .

Next we formalize that this vector y closely indicates our planted set S. We sort the vector

y by absolute value and pick the top k entries in a set S′. let t be a threshold such that we

have S′ = {i : |yi| ≥ t}.
We denote B as the bad set of vertices, B

def
= S \ S′. We note that |S \ S′| = |B| = |S′ \ S|

since both S and S′ have cardinality k. We let η be the fraction of these bad vertices which

belong to S1 and (1− η) fraction then belong to S2. Therefore,

‖y − u‖2 =
∑
i/∈S

yi
2 +

∑
i∈S1

(yi − 1)2 +
∑
i∈S2

(yi + 1)2 .

Doing a term by term analysis we get that,∑
i/∈S

y2
i ≥

∑
i∈S′,i/∈S

y2
i ≥ |B| t2∑

i∈S1

(yi − 1)2 ≥
∑

i∈S1,i/∈S′
(yi − 1)2 ≥ η |B|min

{
(t− 1)2, (t+ 1)2

}
≥ η |B| (1− t)2

∑
i∈S2

(yi + 1)2 ≥
∑

i∈S2,i/∈S′
(yi + 1)2 ≥ (1− η) |B|min

{
(1− t)2, (1 + t)2

}
≥ (1− η) |B| (1− t)2 .

where the first inequality holds because ui = 0 and y2
i ≥ t2 and in the second and third

inequality we use ui = −1 and ui = 1 respectively and yi ∈ [−t, t]. The lower bound in these

inequalities hold for t ≤ 1; which is true, as can be seen form the fact that the algorithm picks

top k entries of y, and t > 1 gives a contradiction to the fact that vector u (which lies inside

our ε-net of radius
√
k) has squared norm ≤ k. Therefore we get that,

2ρk

d/2 + ρ
≥ ‖y − u‖2 ≥ |B|

(
t2 + (1− t)2

)
≥ |B|

2
.

The last inequality holds by observing that t = 1/2 minimizes that expression, and thus we

have that the set of bad vertices |B| ≤ δk. 2

3.1.2 Algorithm for full recovery

In Lemma 3.1 we output a set S′ such that |S′| = k and |S′ ∩ S| ≥ (1− δ) k for any constant

δ > 0. In this section, we propose an algorithm that allows us to recover the whole of the

31

planted set (in appropriate parameter regimes). The main idea here is to distinguish between

vertices that belong to S and those which don’t by considering the size of a maximum matching

in subgraph induced on the neighborhood of vertex and the set S′. This idea is used in the

work [GLR19] in a similar vein to recover the vertices in a semi-random model for the same

problem.

However, since S′ is a function of the randomness of the input and not a fixed set, we cannot

use the randomness of the input instance in our arguments. Therefore, we bound the size of

matching to the fixed set S (where we are allowed to use the randomness of the instance) and

factor in the worst-case contribution from S \ S′.

Lemma 3.5 Given a set S′ of size k such that S ∩ S′ ≥ (1− δ) k for any δ > 0 in the regimes

of p, k discussed in Theorem 3.3, there exists a polynomial time deterministic algorithm that

recovers the planted set S completely.

Proof: Let MM (v, S) denote the maximum matching in the graph induced on N(v)∩S. For

a vertex v ∈ V \ S, the expected size of this maximum matching is given as,

E [MM (v, S)] ≥ p2k

2
.

This is because a d-regular bipartite graph has at least one perfect matching. We fix an arbitrary

such matching. Now each of these matching edges are present in this neighborhood graph with

probability p2. The edges in the matching are independent of each other and therefore using

the Chernoff bounds (Fact 2.3) we obtain,

P
[
v ∈ V \ S : MM (v, S) ≤ p2k

4

]
≤ exp

(
−p

2k

8

)
.

This holds for a fixed vertex v ∈ V \ S; to make this claim for an arbitrary vertex in V \ S we

do a union bound to obtain,

P
[
∃v ∈ V \ S,MM (v, S) ≤ p2k

4

]
≤ k2 exp

(
−p

2k

8

)
.

Hence for p ≥ 5
√

(log k) /k we have a lower bound on the size of matching in the graph induced

on the neighborhood of all v ∈ V \S and the set S, with high probability (over the randomness

of the input). However as we mention earlier, we are interested in size of matching for a vertex

v ∈ V \S and S′. Since |S \ S ′| ≤ δk, and the vertices in matching edges need to be distinct the

drop in the size of matching is at most δk. Therefore the size of matching for vertex v ∈ V \ S

32

and set S′ can be lower bounded as,

MM (v, S′) ≥
(
p2

4
− δ
)
k .

Now for a vertex v ∈ S the size of matching in N(v) ∩ S is 0. This is because a matching edge

in N(v)∩S along with the vertex v gives a triangle in S. This contradicts that S is a bipartite

graph and hence it has no triangles. Therefore in the worst case, using the same argument

as above, we can upper bound the size of maximum matching for vertex v ∈ S in the graph

N(v) ∩ S′ is,

MM (v, S′) ≤ δk .

Therefore we can distinguish the set to which a vertex belongs if,

γp2

4
− δ > δ, for convenience we take this gap to be 2δ then δ ≤ γp2

16
. (3.13)

To satisfy eq. (3.12) we use the value of δ and from the condition eq. (3.13) above we get that

for full recovery it is sufficient if k ≥ 256
√
n/γ2p3. 2

Proof: [Proof of Theorem 3.3] Lemma 3.1 allows us to recover (1− δ) fraction of vertices in

the planted set. Using Lemma 3.5 we can recover the remaining set of vertices. Hence for a

fixed p, k where p ≥ 5
√

(log k) /k, k ≥ 256
√
n/γ2p3 we can recover the planted set exactly.

The vector y used for recovery was constructed in Lemma 3.4 and this takes time exponential

in L′τ log k. Computing eigenvectors takes poly (n) time Therefore, the overall running time is

O
(
poly(n)k(Lτ+1)

)
. 2

3.2 Exact recovery in polynomial time using SDP

In this section, we consider the problem of recovering the planted bipartite graph constructed

as per model Definition 3.1. The problem becomes non-trivial in d ≈ pk regimes, where the

exact recovery problem in a more general setting of densest k-subgraph problem is information-

theoretically unsolvable. Formally, this follows from Theorem 2.1, [CX16] by setting d = qk =

pk and setting r = 1 where q is the edge probability within the vertices of planted subgraph

and a p is the edge probability when at least one of the vertex does not belong to the planted

subgraph, and r is the number of clusters. However, in our problem, we use the specifics of the

bipartite structure in hand to write an SDP relaxation (SDP 3.1) and show that we can use it

to recover the planted set exactly. Formally we prove the following.

33

Theorem 3.4 For a fixed p, k satisfying k ≥ 256

αp7/2

√
n log n and p ≥ 5

(
(log k) / (1/2 + α)4 k

)1/6
,

there exists a deterministic algorithm which recovers the planted set S in an instance generated

as per threshold semi-random model (Definition 3.1), exactly with high probability (over the

randomness of the input).

We did not make any attempt to optimize the constants above (in Theorem 3.4), and the

specific values we use are a result of choices we make for ease of calculation.

We break up our study of the problem into two different regimes based on the degree d = γpk

of the planted graph, namely the low degree regime and high degree regimes.

3.2.1 High degree regimes

The main workhorse of our algorithm in high degree regimes is our SDP 3.1. In this section,

we show how to construct an optimal dual to the SDP. By high degree regimes we mean that

γ ≥ 1/2 + α. We recall that α is a small positive constant smaller than 1/6.

3.2.1.1 Constructing an optimal dual

Our core idea is to to extend (by padding with 0’s) the threshold rank eigenvectors of A|S×S
to be the eigenvectors 9 of the dual matrix Y . We recall the list of conditions (1)-(4) that dual

variables had to follow as,.

1. β = −d

2.
〈
ggT , Y

〉
= 0

3. Y � 0

4. λ2 (Y) > 0 .

Now since the eigenvalues of A|S×S lie in the interval [−d, d], these threshold rank eigen-

vectors which are now also the threshold rank eigenvectors of Y with eigenvalue d + λl have

a non-negative quadratic form10. This way we attempt to satisfy feasibility and optimality

condition (3) and (4) respectively.

For the remaining eigenvectors (other than threshold rank eigenvectors), we show (in Lemma 3.6)

that if the matrix of non-negative dual variables B satisfies ‖B‖2 = Õ (pk)11, the quadratic form

is indeed non-negative. The reasons for this condition will be evident in the proof of Lemma 3.6.

This imposes another condition that we use to characterize our dual variables.

Therefore to show the feasibility of Y , it suffices to construct a dual solution B where

9With slight abuse of notation we will denote these padded vectors of length n also as v(l).
10The quadratic form of vector x with a matrix Y is a number given by xTY x
11Õ(.) hides logarithmic factors.

34

‖B‖2 = Õ (pk) and conditions as,∑
i∈S

v
(l)
i (Aij +Bij) = 0, ∀j ∈ V \ S . (3.14)

To aid further discussion, it is useful to note that eq. (3.14) considers

• Lτ different system of equations Ej, one for each v(l).

• Each system Ej involves |S| × |V \ S| variables Bij where i ∈ S and j ∈ V \ S.

Constructing an explicit dual solution doesn’t seem easy for all these constraints. Therefore we

try to show the existence of a feasible dual solution satisfying condition (1)-(4), eq. (3.14) and

‖B‖2 = Õ (pk).

We defer proving the existence of such Bij’s to Section 3.2.1.2. However since the eq. (3.14)

only concerns Bij ∈ S × (V \ S). Therefore, we can set Bij = 0,∀ {i, j} ∈ (V \ S × V \ S) for

the purpose of satisfying eq. (3.14). Since eq. (3.7) already forces us to set Bij ∈ S × S to be 0

we have,

B = BS×S +BS×(V \S) +B(V \S)×S +B(V \S)×(V \S) = BS×(V \S) +B(V \S)×S .

We will next show that under the assumption about existence of such Bij’s, how we can proceed

towards satisfying the optimality conditions for dual.

Fact 3.1 Given T to be some set of orthonormal eigenvectors of a symmetric matrix M labeled

as

T =
{
u(1),u(2), . . . ,u(n)

}
,

to show that M � 0 it is sufficient to show that uTMu ≥ 0,∀u ∈ T .

Lemma 3.6 For p, k satisfying k ≥
(
256/αp7/2

)√
n log n and p ≥ 5 ((log k) /γ4k)

1/6
, when

λmin

(
A(V \S)×(V \S) − p1V \S1TV \S

)
≥ −τ , γ ≥ 1/2+α and for choice of τ = (d (1/2− α) / (1/2 + α))

and if there exists a B satisfying ‖B‖ ≤ 512
√
n (log k)/p5/2, the dual matrix Y � 0. Addition-

ally, if the graph is connected, we have that λ2 (Y) > 0.

Proof: We will proceed using Fact 3.1 and show that uTY u ≥ 0, for all eigenvectors u ∈ T of

the dual matrix Y with high probability (over the randomness of the input). We start with the

τ -threshold rank eigenvectors of A|S×S which are now also eigenvectors of Y (after padding them

35

with 0’s). These are already orthonormal since AS×S is symmetric. Also these eigenvectors have

eigenvalue d+ λl ≥ 0 and therefore,

v(l)TY v(l) =
〈
v(l), Y v(l)

〉
= (d+ λl)

∥∥v(l)
∥∥2 ≥ 0, ∀v(l) ∈ P .

Now since the dual matrix Y is symmetric, we can extend the set of vectors P to a complete

eigenbasis T for Y as follows. We include an eigenvector x in T \P if x
〈
x,v(l)

〉
= 0,∀v(l) ∈ P .

Since, the eigenvectors added will be orthogonal to zero-padded extended vectors, this also

implies that
〈
xS,v

(l)
〉

= 0,∀v(l) ∈ P and hence,

xTAS×Sx = xTSAS×SxS ≥ −τ ‖xS‖2 .

for τ ≥ 0. Now we examine the quadratic form for such vectors x in the subspace formed by

vectors of set T \ P ,

xTY x = xT
(
AS×S + A(V \S)×(V \S) + p

(
11

T − 1S1TS − 1V \S1TV \S
)

+R + dI +B
)

x (3.15)

≥ xTS
(
AS×S − p1S1TS

)
xS + xTV \S

(
A(V \S)×(V \S) − p1V \S1TV \S

)
xV \S + (d− ‖R‖ − ‖B‖) ‖x‖2

≥ λmin

(
AS×S − p1S1TS

)︸ ︷︷ ︸
=T1

‖xS‖2 + λmin

(
A(V \S)×(V \S) − p1V \S1TV \S

)︸ ︷︷ ︸
=T2

∥∥xV \S∥∥2

+ (d− ‖R‖ − ‖B‖)︸ ︷︷ ︸
=T3

‖x‖2 .

Here, above while decomposing our matrix A we have used,

A = AS×S + A(V \S)×)V \S) + E
(
AS×(V \S) + A(V \S)×S

)
+
(
AS×(V \S)+A(V \S)×S − E

(
AS×(V \S) + A(V \S)×S

))
= AS×S + p

(
11

T − 1S1TS − 1V \S1TV \S
)

+R (Recall that R is a matrix of form M − E[M])

Consider the term T1. Note that −p1S1TS shifts only the 1S eigenvector of AS×S and the

corresponding eigenvalue is then d−pk. Letting D = AS×S−p1S1TS and as long as d−pk ≥ −τ 12

we can claim that,

xTSDxS ≥ −τ ‖xS‖2 . (3.16)

Now, take T2. By our assumption on the smallest eigenvalue of A(V \S)×(V \S) − p1V \S1TV \S
12It is easy to check that for our choice of γ and τ this holds.

36

we have that,

xTV \S
(
A(V \S)×(V \S) − p1V \S1TV \S

)
xV \S ≥ λmin

(
A(V \S)×(V \S)

) ∥∥xV \S∥∥2 ≥ −τ
∥∥xV \S∥∥2

. (3.17)

Using eq. (3.15), eq. (3.17) and eq. (3.16) we obtain that,

xTY x ≥ (d− τ − ‖R‖ − ‖B‖) ‖x‖2 .

Finally, for T3, recall that ‖R‖ ≤ 2
√
n (Claim 2.1) and for our choice of τ and for ‖B‖ ≤

256
√
n(log k)/p5/2, in the regimes of k, n, p as stated, we have that,

d− τ = d

(
1− 1/2− α

1/2 + α

)
=

2αd

1/2 + α
= 2αpk ≥ 512

p5/2

√
n log n which is ≥ ‖B‖+ ‖R‖ .

Therefore, the dual matrix Y � 0. Additionally, if the planted bipartite graph is connected,

the vector 1S1 − 1S2 is the only eigenvector with eigenvalue −d and hence by our construction,

it is the only eigenvector of Y with eigenvalue 0. Therefore we have that λ2(Y) > 0. 2

We next present the algorithm based on the guarantees provided by Lemma 3.6 as,

Algorithm 1:

Require: G = (V,E), with a d-regular planted bipartite graph S (d = γpk, γ ≥ 2/3).

Ensure: The set of vertices in planted bipartite graph S.

1: Initialize S = φ to denote the set of recovered vertices.

2: Solve SDP 3.1.

3: Let S = {i : ‖xi‖ > 0}
4: Return S.

3.2.1.2 Pseudo-random values of dual variables

We now show that the dual SDP 3.2 is feasible. In particular this will be achieved by showing

that eq. (3.14) has a solution. Also as discussed, we want the dual solution to satisfy the

constraint ‖B‖ = Op

(√
n log k

)
. Lemma 3.6 shows that if there exists a choice of dual variables

B which satisfies this constraint, the dual SDP 3.2 is feasible and has rank n − 1. Turns out,

this constraint is implied if Bij ≤ t = Op

(√
log k/k

)
as shown below.

Lemma 3.7 For 0 ≤ Bij ≤ t, ∀(i, j) ∈ S × (V \ S) we have that ‖B‖2 ≤ 2t
√
k (n− k) .

37

Proof:

‖B‖2 ≤
∥∥BS,(V \S)

∥∥
2

+
∥∥B(V \S),S

∥∥
2

= 2
∥∥BS,(V \S)

∥∥
2
≤ 2

∥∥BS,V \S
∥∥
F

(‖M‖2 ≤ ‖M‖F)

= 2

√ ∑
i∈S,j∈V \S

B2
ij ≤ 2t

√
k (n− k) .

2

Corollary 3.1 If Bij ≤
(
32Lτ/p

3/2
)√

(log k) /(1/2 + α)k we have ‖B‖2 ≤
(
256/p5/2

)√
n log k.

Proof: Using Lemma 3.7 and setting t =
(
32Lτ/p

3/2
)√

(log k) /(1/2 + α)k we have,

‖B‖2 ≤ 2t
√
k (n− k) =

64Lτ

p3/2
√

1/2 + α

√
n log k .

From Claim 3.1 we have that, Lτ ≤ γpk2/2τ 2 and since we choose α ≤ 1/6, we have τ ≥ d/2 and

since α > 0 we have γ ≥ 1/2. Using these bounds we obtain that ‖B‖2 ≤
(
256/p5/2

)√
n log k

2

Next we aim to show that there exists a solution to Bij’s which satisfies eq. (3.14) and the

criteria in Corollary 3.1 which eventually meets the hypothesis of Lemma 3.6.

Definition 3.3 Consider the collection of linear systems in eq. (3.14). We define a collection

of spectral embedding based linear systems by reorganizing this collection as follows.

• For j ∈ V \ S, define a system of equations Fj.

• In all, this gives a collection of systems {Fj}j∈V \S. Each system contains Lτ × |S| vari-

ables. In particular, the system Fj is expressed in the standard form Wx = b, where

W ∈ RLτ×k is a matrix formed by stacking the vectors v(l) ∈ P as rows.

Formally a vector w(i) ∈ RLτ is defined such that, w
(i)
l = v

(l)
i . This viewpoint goes by the name

of spectral embedding in literature and has been explored in other works on graph partitioning,

[NJW01, LOT12, LRTV12] etc.

Fix j ∈ V \ S and consider the system Fj. The vector b in this system is a row vector of

size Lτ × 1 and has entries given by bl = −
∑

i∈S Aijv
(l)
i ,∀l ∈ [Lτ] and x here is a row vector of

size k× 1 where the entry xi = Bij (recall that we have fixed a j ∈ V \S). However since Bij’s

are not arbitrary variables but dual variables of SDP 3.2, they are constrained. Firstly, they

should only be defined for i ∈ N(j) and secondly they are required to be non-negative. Since

the graph on S× (V \ S) is random, the choice of random edges while choosing N(j) (in model

38

construction, refer Definition 3.1) fixes those corresponding Bij’s that have to be set to zero

(whenever the edge {i, j} is not present in the graph). For simplicity, consider the case p = 1,

i.e. when Aij = 1 for all i ∈ S, j 6∈ S. Here the full set of Bij’s in S × (V \ S) are available and

it is easy to satisfy eq. (3.14). This is because for any vector y ∈ RL,

bTy =
∑
r∈[L]

bryr = −
∑
r∈[L]

∑
i∈S

v
(r)
i yr = −

∑
i∈S

∑
r∈[L]

v
(r)
i yr (3.18)

= −
∑
i∈S

∑
r∈[L]

w(i)
r yr = −

∑
i∈S

〈
w(i), y

〉
= −

〈∑
i∈S

w(i),y

〉
= 0 . (3.19)

where the last equality holds since v(l) is orthogonal to 1S eigenvector13 translates to
∑

i∈S w(i)

beging zero. Using the standard variant of Farkas’ Lemma (refer [BV04]), this immediately

implies the existence of a solution to equation eq. (3.14). However, in general, for p < 1, the

eq. (3.18) does not hold and we need to do more work here.

Now, let W̃ denote the submatrix after removing the columns corresponding to i /∈ N(j)

and t to be the absolute bound on the entries of B matrix (as desired in Corollary 3.1). We

thus consider the following feasibility LP formulation for this problem.

LP 3.1

W̃x = b (3.20)

0 ≤ x ≤ t1 . (3.21)

The feasibility for such LPs is typically characterized by the Theorem of Alternatives (e.g.,

Farkas’ Lemma). The standard variants for these deal with either the equality constraints or

the inequality constraints. Here, our LP 3.1 has mixed constraints, but we can derive a Farkas’

Lemma style Theorem of Alternatives (along the lines of [BV04]) as.

Proposition 3.1 (Folklore) For a fixed u ∈ RLτ , exactly one out of these two systems of

linear equations is feasible,

1. {x : Cx = f , 0 ≤ x ≤ u}.

2.
{
y : CTy + z ≥ 0, fTy + uTz < 0,y ∈ RLτ , z ≥ 0

}
.

13
1S vector has eigenvalue d and hence is not a threshold rank eigenvector.

39

Proof: For completeness, we give a proof along the lines of proof for the standard variants of

Farkas’ Lemma in Section 3.3.2. 2

Corollary 3.2 The primal LP 3.1 is feasible iff

∀y ∈ RLτ , ∀z ≥ 0, W̃ Ty + z ≥ 0 =⇒ bTy + t 〈z,1〉 ≥ 0 . (3.22)

Proof: The above follows by setting u = t1, f = b and C = W̃ in Proposition 3.1. 2

We wish to compute a value of t > 0 such that the eq. (3.22) holds. Proving this seems

to require a better understanding of the structure of these embedding vectors w(i)’s. Since

these are intimately connected to the threshold rank eigenvectors v(l), we use the structure

of threshold rank eigenvectors to characterize the embedding vectors. Therefore, next (in

Lemma 3.8 and Lemma 3.9) we prove some useful properties of these eigenvectors which will be

used in the analysis. Throughout the rest of the section we will assume that the eigenvectors{
v(1), . . . ,v(Lτ)

}
∈ P have unit norm.

Lemma 3.8 For an eigenvector v(l) ∈ P we have that,
∥∥v(l)

∥∥
∞ ≤

2√
d

.

Proof: Since v(l) is an eigenvector of A|S×S we have that,

A|S×S v(l) = λlv
(l) = −d(1− δ)v(l) . (3.23)

where δ ∈ [0, 1/2] (since by our choice of α we always have τ > d/2). We compare the vectors

in eq. (3.23) component wise and we have that,∑
i∈N(j)

v
(l)
i = −d(1− δ)v(l)

j ∀j ∈ S . (3.24)

We take absolute value on both sides and use Cauchy–Schwarz inequality. This gives

∣∣∣−d(1− δ)v(l)
j

∣∣∣ =

∣∣∣∣∣∣
∑
i∈N(j)

v
(l)
i

∣∣∣∣∣∣ =
∣∣〈1N(j),v

(l)
〉∣∣ ≤ √d√‖v(l)‖2 ≤

√
d .

This allows us to give an upper bound on the l∞ norm of the eigenvector v(l) by comparing the

left and right hand side as, ∣∣∣v(l)
j

∣∣∣ ≤ 1

(1− δ)
√
d
≤ 2√

d
. (3.25)

40

2

Lemma 3.9 For a fixed j ∈ V \S and for
{
w(i)|i ∈ N(j)

}
, the spectral embedding of randomly

selected neighbours of j, we have that with probability ≥ 1− O (1/k4)∥∥∥∥∥∥
∑
i∈N(j)

w(i)

∥∥∥∥∥∥
2

≤ 2
√
Lτ log k .

Proof: To show the claim above, we first show that
∥∥∥∑i∈N(j) w(i)

∥∥∥
∞
≤ 2
√

log k. Now since{
v(1), . . . ,v(Lτ)

}
were orthogonal to 1S vector to start with,

∑
i∈S w(i) = 0. Let r ∈ [Lτ] denote

the index which maximizes
∣∣∣∑i∈N(j) w

(i)
l

∣∣∣. Since
∑

i∈S w
(i)
r = 0 we have that,

E

 ∑
i∈N(j)

w(i)
r

 = 0 .

Then we can use Hoeffding bounds (Fact 2.2) to bound as,

P

∣∣∣∣∣∣
∑
i∈N(j)

w(i)
r

∣∣∣∣∣∣ ≥ 2
√

log k

 ≤ 2 exp

(
− 4 log k∑k

i=1w
(i)
r

2

)
= 2 exp

(
− 4 log k∑k

i=1 v
(r)
i

2

)

= 2 exp (−4log k) =
2

k4
.

Therefore with probability ≥ 1− O (1/k4), we have that
∥∥∥∑i∈N(j) w(i)

∥∥∥
2
≤ 2
√
Lτ log k . 2

Proposition 3.2 For choice of t =
(
32Lτ/p

3/2
) (√

(log k) /γk
)

and for p ≥ 5 ((log k) /γ4k)
1/6

,

with high probability (over the randomness of the input instance),

∀y ∈ RLτ , ∀ z ≥ 0, W̃ Ty + z ≥ 0 =⇒ bTy + t 〈z,1〉 ≥ 0 .

Proof: For the sake of contradiction, suppose there exists a y ∈ RLτ and z ≥ 0 such that

W̃ Ty + z ≥ 0 and bTy + t 〈z,1〉 < 0. We can then write the given condition

W̃ Ty + z ≥ 0 in the form
(
W̃ Ty

)
i
+ zi ≥ 0, use

(
W̃ Ty

)
i

=
〈
w(i),y

〉
to get zi ≥ −

〈
w(i),y

〉
.

Now since we have that z ≥ 0, it is sufficient if we prove our claim for the minimum possible

value of z. We do so by setting zi = max
{

0,−
〈
w(i),y

〉}
. This is sufficient because t > 0 and

41

〈z,1〉 ≥ 0 and hence bTy + t 〈z,1〉 can only increase for a larger value of z. We then express

the term bTy as,

bTy =
∑
r∈[Lτ]

bryr = −
∑
r∈[Lτ]

∑
i∈N(j)

v
(r)
i yr = −

∑
i∈N(j)

∑
r∈[Lτ]

v
(r)
i yr (3.26)

= −
∑
i∈N(j)

∑
r∈[Lτ]

w(i)
r yr = −

∑
i∈N(j)

〈
w(i),y

〉
. (3.27)

Using the value of z as above i.e zi = max
{

0,−
〈
w(i),y

〉}
, we can rewrite the condition

bTy + t 〈z,1〉 < 0 as, ∑
i∈N(j)

〈
w(i),y

〉
+ t

∑
i∈N(j)

min
{

0,
〈
w(i),y

〉}
> 0 . (3.28)

To finish the proof by contradiction, we will show that eq. (3.28) does not hold for our choice

of t. Without loss of generality we assume ‖y‖ = 1 and proceed to bound the first term in the

expression on left hand side of eq. (3.28) as,

∑
i∈N(j)

〈
w(i),y

〉
=

〈
y,
∑
i∈N(j)

w(i)

〉
≤ ‖y‖

∥∥∥∥∥∥
∑
i∈N(j)

w(i)

∥∥∥∥∥∥ ≤ 2
√
Lτ log k (3.29)

where the last inequality follows from Lemma 3.9. In Lemma 3.11 we give an upper bound on

the second term as ∑
i∈N(j)

min
{

0,
〈
w(i),y

〉}
≤ − (p/16)

√
d/Lτ . (3.30)

The bounds in eq. (3.29) and eq. (3.30) hold for a fixed j ∈ V \S, but since these bounds come

from Lemma 3.9 and Lemma 3.11 which hold with probability ≥ 1 − O (1/n2); we do a union

bound over all j ∈ V \S such that these bounds hold for all j ∈ V \S with high probability (over

the randomness of the input instance). Then for our choice of t =
(
32Lτ/p

3/2
) (√

(log k) /γk
)

in eq. (3.28) we get,

2
√
Lτ log k −

(
32Lτ

√
log k

p3/2
√
γk

)(
p
√
d

16
√
Lτ

)
= 2
√
Lτ log k −

(
32Lτ

√
log k

p3/2
√
γk

)(
p3/2
√
γk

16
√
Lτ

)
= 0 .

and hence eq. (3.28) doesn’t hold.

2

42

Towards bounding the second term, we use a well known fact (e.g. shown in [LRTV11]))

that these spectral embedding vectors are isotropic (upto a scaling of
√
k) where i ∈ N(j) are

being sampled randomly as per Gn,p distribution. For p = 1, we can then show that equation

eq. (3.28) does not hold and we are done. However, for p < 1, we have E
[
w(i)w(i)T

]
= p and

these vectors are close to isotropic. We formalize this in lemma 3.10 by using Matrix Bernstein

concentration inequality. We thus show a lower bound on∑
i∈N(j)

〈
y,w(i)

〉2 ≥ p/2 . (3.31)

showing that these are p/2-isotropic14.

Lemma 3.10 For an arbitrary y ∈ RLτ and a fixed j ∈ V \ S, for p ≥ 5 (log k/γ4k)
1/6

, we

have that with probability ≥ 1− O (1/k4),∑
i∈N(j)

〈
y,w(i)

〉2 ≥ p

2
.

Proof:

∑
i∈N(j)

〈
y,w(i)

〉2
=
∑
i∈N(j)

(
yTw(i)

) (
w(i)Ty

)
= yT

 ∑
i∈N(j)

w(i)w(i)T

y .

Claim 3.2 We let M =
∑

i∈N(j) w(i)w(i)T , a matrix of size Lτ × Lτ then,

E [Mrs] = 0 for r 6= s and E [Mrr] = p .

Proof: A proof of this can be found in [LRTV11]. For completeness we give a proof in

Section 3.3.3 2

Therefore we conclude that E[M] = pI. Next, we show the concentration of the matrix M

by using Matrix Bernstein inequality Theorem 6.1 [Tro12] stated here as,

Fact 3.2 (Matrix Bernstein inequality) For a sequence of independent,symmetric, and ran-

dom matrices
{
Xi ∈ Rk×k}k

i=1
where,

• E [Xi] = 0

14We say that a distribution is C-isotropic if the eigenvalues of covariance matrix lie in [(1/C) , C].

43

• ‖Xi‖ ≤ ρ

• ν = ‖E [
∑

i (X
2
i)]‖

we have that for all ε ≥ 0,

P

[∥∥∥∥∥∑
i

Xi

∥∥∥∥∥ ≥ ε

]
≤ 2k exp

(
−ε2

2ν + 2ρ3

)
.

In our setting we let,

Yi =

w(i)w(i)T if i ∈ N(j)

0 otherwise .

and define the random matrices Xi = Yi − E [Yi] so that E [Xi] = 0. Writing this explicitly we

have,

Xi =

(1− p)w(i)w(i)T if i ∈ N(j)

−pw(i)w(i)T otherwise .

From above we can see that,

‖Xi‖ ≤ max
{∥∥∥pw(i)w(i)T

∥∥∥ , ∥∥∥(1− p)w(i)w(i)T
∥∥∥} ≤ ∥∥w(i)

∥∥2 ≤ 2Lτ
d

where we have used the fact that w(i)w(i)T is a rank one matrix and hence
∥∥∥w(i)w(i)T

∥∥∥ ≤∥∥w(i)
∥∥2

. and the last inequality holds due to lemma 3.8. Hence we choose value of ρ = 2Lτ/d.

Next we bound the variance ν as,

ν =

∥∥∥∥∥E
[∑
i∈S

X2
i

]∥∥∥∥∥ =

∥∥∥∥∥∑
i∈S

E
[
X2
i

]∥∥∥∥∥ ≤∑
i∈S

∥∥E [X2
i

]∥∥ . (3.32)

To compute E [X2
i] we note that,

X2
i =

(1− p)2w(i)w(i)Tw(i)w(i)T if i ∈ N(j)

p2w(i)w(i)Tw(i)w(i)T otherwise .

44

Therefore E [X2
i] = p(1− p)w(i)w(i)Tw(i)w(i)T and using this in eq. (3.32) we get,

ν ≤
∑
i∈S

∥∥E [X2
i

]∥∥ ≤ p(1− p)
∑
i∈S

∥∥∥w(i)w(i)T
∥∥∥∥∥∥w(i)w(i)T

∥∥∥ ≤∑
i∈S

∥∥w(i)
∥∥4

= k
∥∥w(i)

∥∥4 ≤ 16Lτ
2k

d2
.

(3.33)

Using the value of ν, ρ and the fact that E
[∑

i∈N(j) w(i)w(i)T
]

= pI and choosing ε = p/2

we have that,

P

∥∥∥∥∥∥
∑
i∈N(j)

w(i)w(i)T − pI

∥∥∥∥∥∥ ≥ p

2

 ≤ 2k exp

(
− (p2/4)

2
(
16Lτ

2k/d2
)

+ (2pLτ/3d)

)
(3.34)

≤ 2k exp

(
− p2/4

2 (32L2
τk) /d2

) ((
32L2

τk
)
/d2 ≥ (2pLτ)

3d

)
≤ 2k exp

(
−γ

4p6k

1024

)
(Using Claim 3.1) .

For γ ≥ 1/2 and p ≥ 5 (log k/γ4k)
1/6

, Lemma 3.10 holds with probability ≥ 1− O (1/k4). 2

With these bounds at hand we proceed to bound the second term in eq. (3.28) as,

Lemma 3.11 For a unit vector y ∈ RLτ and j ∈ V \ S and for p ≥ 5 ((log k) /γ4k)
1/6

with

probability ≥ 1− O (1/k4) we have that,

∑
i∈N(j)

min
{

0,
〈
w(i),y

〉}
≤ − p

16

√
d

Lτ
.

Proof: We start by defining these two sets,

P =
{
i ∈ N(j) :

〈
y,w(i)

〉
≥ 0
}

N =
{
i ∈ N(j) :

〈
y,w(i)

〉
< 0
}

Clearly the summation over terms in P is 0 so we focus on the terms in N. We first consider

the case when
∑

i∈N
〈
y,w(i)

〉2 ≥ p/4 and since
∣∣〈y,w(i)

〉∣∣ ≤ ‖y‖∥∥w(i)
∥∥ ≤ 2

√
Lτ/
√
d (using

Lemma 3.8) we have that,

p

4
≤
∑
i∈N

〈
y,w(i)

〉2
=
∑
i∈N

∣∣〈y,w(i)
〉∣∣2 ≤ 2

√
Lτ
d

∑
i∈N

∣∣〈y,w(i)
〉∣∣ .

and therefore
∑

i∈N
〈
y,w(i)

〉
≤ − (p/8)

√
d/Lτ .

45

Next we consider the case when
∑

i∈N
〈
y,w(i)

〉2
< p/4. Now in this case, from Lemma 3.9

we know that,
∥∥∥∑i∈N(j) w(i)

∥∥∥
2
≤ 2
√
Lτ log k, we can write,

∣∣∣∣∣∣
∑
i∈N(j)

〈
y,w(i)

〉∣∣∣∣∣∣ =

∣∣∣∣∣∣
〈

y,
∑
i∈N(j)

w(i)

〉∣∣∣∣∣∣ ≤ ‖y‖
∥∥∥∥∥∥
∑
i∈N(j)

w(i)

∥∥∥∥∥∥ ≤ 2
√
Lτ log k . (3.35)

From eq. (3.35) we obtain that,∑
i∈P

〈
y,w(i)

〉
≤ −

∑
i∈N

〈
y,w(i)

〉
+ 2
√
Lτ log k .

Using eq. (3.35) and
∑

i∈N
〈
y,w(i)

〉2
< p/4 we have that,

p

4
≤
∑
i∈P

〈
y,w(i)

〉2 ≤ ‖y‖max
i∈P

∥∥w(i)
∥∥∑
i∈P

〈
y,w(i)

〉
≤ 2

√
Lτ
d

∑
i∈P

〈
y,w(i)

〉
(3.36)

≤ −2

√
Lτ
d

∑
i∈N

〈
y,w(i)

〉
+ 4

√
Lτ

2 log k

d
. (3.37)

We wish that the term 4
√
Lτ

2 (log k) /d ≤ p/8 and by using Lτ from Claim 3.1, we get that

this holds is implied by

p2 ≥ 1024

(
γpk2

2τ 2

)2
log k

d
which holds if p ≥ 1024

(
γpk2

2(d/2)2

)2
log k

d

where we have accounted for the worst case value of τ = d/2. Now using d = γpk we can

rewrite as,

p2 ≥ 1024

(
γpk2

2(γpk/2)2

)2
log k

γpk
=

(
4096

γ3p3

)
log k

k
.

Therefore when p ≥ 6 (log k/γ3k)
1/5

we have 4
√
Lτ

2 (log k) /d ≤ p/8 and solving for
∑

i∈N
〈
y,w(i)

〉
in eq. (3.36) we have that,

∑
i∈N

〈
y,w(i)

〉
≤ − p

16

√
d

Lτ
.

We note that this lower bound on p is subsumed by the bound from Lemma 3.10. 2

46

3.2.2 Low degree regimes

Now we consider the regimes when d = γpk with γ ≤ 2/3. We next show that a simple

algorithm (due to [Kuc95]) that collects the bottom k degrees of the graph will work in these

regimes since the vertices in S will have degrees standing out from the rest of the graph.

Algorithm 2:

Require: G = (V,E), with a d-regular planted bipartite graph S (d = γpk, γ ≤ 2/3).

Ensure: The set of vertices in planted bipartite graph S.

1: Initialize S = φ to denote the set of recovered vertices.

2: Sort the degrees of the vertices in G.

3: Let S be the set of bottom k degrees after sorting.

4: Return S.

Lemma 3.12 For k ≥ 6
√
n log n/p the Algorithm 2 returns the planted set S with high proba-

bility (over the randomness of the input).

Proof: For a vertex v ∈ S the degree of the vertex can be upper bounded with high probability

(over the randomness of the input) as,

d(v) ≤ d+ p(n− k) +
√
n log n .

and for a vertex v′ /∈ S the degree can be lower bounded with high probability (over the

randomness of the input) as,

d(v′) ≥ pn−
√
n log n .

where the
√
n log n terms are the high probability bounds after applying Chernoff bounds on

respective degrees. The degrees differ as,

d(v′)− d(v) ≥ pk − d− 2
√
n log n =

pk

3
− 2
√
n log n . (3.38)

where the equality follows from choice of τ = 2d/3. It is also evident from eq. (3.38) that

for k ≥ 6
√
n log n/p, with high probability (over the randomness of the input), the degree for

vertex v ∈ S stands out. 2

3.2.3 Action of Adversary

We recall that in Item 5 of our model construction (Definition 3.1), we allow a monotone

adversary to arbitrarily add edges between two vertices of (V \ S) × (V \ S). Next, we argue

47

that despite the action of an adversary, our algorithms. (Algorithm 1 and Algorithm 2) still

return the planted set S. For the regimes of γ ≤ 2/3 where Algorithm 2 returns the planted

set, this is obvious since our algorithm relies on the difference between the degree of vertices in

S and V \ S and the action of adversary only amplifies the difference. For γ ≥ 2/3, we use the

argument from the work [FK01] to recover the planted set S under the action of an adversary.

Lemma 3.13 Let G̃ be the graph obtained after action of adversary on G as per Item 5,

OPT
(
G̃
)

= OPT (G) and the solution in eq. (3.6) is the unique solution.

Proof: We start by writing out an exact formulation of the problem as an integer quadratic

program,

QP 3.1

min
∑
{i,j}∈E

xixj

subject to ∑
i∈V

x2
i = k (3.39)

xixj ≤ 0 ∀ {i, j} ∈ E (3.40)

x2
i ∈ {0, 1} . (3.41)

We denote by QPOPT (G) to be the minimum objective value to QP 3.1. Now since this is an

exact formulation for our problem we have that, OPT (G) = QPOPT (G). Note that SDP 3.1

is a relaxation to QP 3.1 (after scaling by a factor of k) and hence,

SDPOPT (G) ≤ OPT (G) = QPOPT (G) . (3.42)

We will prove our claim by induction on the number of edges added by adversary in Item 5.

We consider the base case first and let G′ to be the graph obtained after adding an edge to G,

then since the integral solution Equation (3.6) is still a feasible solution to QP 3.1 for G′, using

equality in eq. (3.42) we have that,

OPT (G′) = QPOPT (G′) ≤ −kd .

Also using inequality in eq. (3.42) we have that,

−kd− 1 ≤ SDPOPT (G′) ≤ OPT (G′) ,

48

where first inequality follows from the fact that a solution of value strictly smaller than −kd−1

to SDPOPT (G′) would imply a solution of value strictly smaller that −kd to SDPOPT (G) since

removing an edge, the objective falls by at most 1, due to the SDP constraints. Therefore we

have that,

−kd− 1 ≤ OPT (G′) ≤ −kd .

Now since OPT (G′) is an integer, it can either be −kd or −kd − 1. However if OPT (G′) =

−kd−1, then SDPOPT (G′) ≤ −kd−1 and once we remove the edge back from G′ to obtain G

the SDP solution is still a feasible solution to G with value less than or equal to −kd. However

this solution is different from the integral solution ggT since for the solution ggT , SDPOPT (G′)

would have been −kd as well. Therefore, we have obtained a new solution to our SDP 3.1.

However as argued in Fact 2.6, our SDP can only have a unique solution. Therefore we have

that OPT (G′) = −kd = OPT (G). This argument also proves that the SDP solution to G′ has

to be ggT since otherwise we again get a contradiction to Fact 2.6 for G. Now G̃ is obtained

by a sequence of such operations on G and the argument above holds for each such operation,

and therefore,

OPT (G) = OPT (G′) = . . . = OPT
(
G̃
)
.

2

We have now established everything to prove Theorem 3.4.

Proof: [Proof of Theorem 3.4] For γ ≤ 2/3, as argued above in Lemma 3.12 that the Algo-

rithm 2 recovers the planted set. For γ ≥ 2/3, we know that for p ≥ 5 ((log k) /γ4k)
1/6

and

choice of t =
(
32Lτ/p

3/2
) (√

log k/γk
)

the LP 3.1 has a solution. As argued in Corollary 3.1

this already implies that ‖B‖2 ≤
(
256/p5/2

)√
n log k.

Given this bound on ‖B‖2, Lemma 3.6 guarantees that the Algorithm 1 returns the planted

set S with high probability (over the randomness of the input). Furthermore the lower bound

on k in Lemma 3.6 implies the bound on k in the Lemma 3.12. As argued in Lemma 3.13, the

solution due to SDP remains optimal even after action of monotone adversary as per Item 5.

Therefore Algorithm 1 and Algorithm 2 still return the planted set S respectively. 2

3.3 Miscellaneous proofs

3.3.1 Computing the dual of SDP 3.1

We compute the dual by writing SDP in matrix form as,

49

SDP 3.3

min 〈A,X〉

subject to

〈I,X〉 = 1 (3.43)

〈1ij, X〉 ≤ 0 ∀ {i, j} ∈ E (3.44)

〈1ji, X〉 ≤ 0 ∀ {i, j} ∈ E (3.45)

X � 0 . (3.46)

and we compute the Lagrangian associated with SDP 3.3 as,

L (X,B, Y, β) = 〈A,X〉+ β(1− 〈I,X〉) +
∑
{i,j}∈E

Bij 〈1ij, X〉+
∑
{i,j}∈E

Bji 〈1ji, X〉 − 〈Y,X〉

where β is unconstrained Lagrange dual variable for the equality constraint and B is the matrix

of non-negative Lagrange variables Bij’s and Bji’s for the inequality constraints and Y is a p.s.d

Lagrange dual matrix. We then compute the corresponding Lagrange dual function as,

g (Y,B, β) = inf
X�0

L (X,B, Y, β) =

β if A− βI +B − Y = 0

−∞ otherwise

Therefore we obtain the dual SDP program as described in SDP 3.2

3.3.2 Proof of Proposition 3.1

Proof: Let there be a solution to the first system of equations {x : Cx = f , 0 ≤ x ≤ u} then,

fTy + uTz = (Cx)Ty + uTz = xT (CTy) + uTz = xT (CTy + z) + zT (u− x) ≥ 0 .

and hence the second system of equations does not have a solution.

To show that the system
{
y : CTy + z ≥ 0, fTy + uTz < 0,y ∈ RL, z ≥ 0

}
has a solution im-

plies that the first system has a solution; we start with a contradiction. Let there be no solution

to {x : Cx = f , 0 ≤ x ≤ u}. In other words

@f ∈ C where C := {Cx : 0 ≤ x ≤ u} .

Since C is a closed convex set; by hyperplane separation theorem we have that there exists a y

50

such that,

〈y, f〉 > sup
c∈C
〈y, c〉 = sup

0≤x≤u
〈y, Cx〉 = sup

0≤x≤u

〈
CTy,x

〉
> 0 .

where the last inequality holds by setting x = 0 since 0 ∈ C. Now since both u, z ≥ 0 we have

that,

fTy + uTz > 0 .

However this is a contradiction to the fact that this system had a solution. Hence the first

system has no solution. 2

3.3.3 Proof of Claim 3.2

Proof: By our definition of M we have that,

Mrr =
∑
i∈N(j)

(
w(i)w(i)T

)
rr

=
∑
i∈N(j)

(
w(i)
r

)2

and taking expectation over the choice of random edges i ∈ N(j) we obtain,

E [Mrr] = E

[∑
i∈S

1i∈N(j)

(
w(i)
r

)2

]
=
∑
i∈S

E
[
1i∈N(j)

(
w(i)
r

)2
]

where 1i∈N(j) is an indicator random variable for the edge {i, j} and takes the value 1 with

probability p and 0 with probability 1− p. Therefore,

E [Mrr] =
∑
i∈S

E
[
1i∈N(j)

(
w(i)
r

)2
]

= p
∑
i∈S

(
w(i)
r

)2
= p

∑
i∈S

(
v

(r)
i

)2

= p
∥∥v(r)

∥∥2
= p .

Similarly we obtain E [Mrs] for r 6= s as

E [Mrs] = E

 ∑
i∈N(j)

w(i)
r w

(i)
s

 = E

[∑
i∈S

1i∈N(j)w
(i)
r w

(i)
s

]
=
∑
i∈S

E
[
1i∈N(j)w

(i)
r w

(i)
s

]
= p

∑
i∈S

w(i)
r w

(i)
s = p

∑
i∈S

v
(r)
i v

(s)
i = p

〈
v(r),v(s)

〉
= 0 .

2

Acknowledgments: The work in this chapter is based on joint work with Akash Kumar and

Anand Louis.

51

Chapter 4

Maximum Independent set in

hypergraphs

Given a hypergraph H = (V,E), the independent set problem asks to compute a set of vertices

such that no hyperedge is completely contained inside the set. Finding the largest independent

set problem is NP-hard, since the degenerate graph version of the problem is NP-hard [Kar72].

It follows from the work of [H̊as97, Zuc07] that the problem is hard to approximate better than

the factor of n1−ε for every ε > 0 unless P=NP.

Models and Results

Here, we study the problem in [FK01] semi-random model restated here for r-uniform hyper-

graphs as,

Definition 4.1 Given parameters n, k, r, and p, a hypergraph H is constructed as follows.

1. Let V be a set of n vertices. Fix an arbitrary subset S ⊂ V of size k.

2. Add a hyperedge independently with probability p for each r−tuple of vertices {i1, i2, . . . , ir},
such that {i1, i2, . . . , ir} ∩ S 6= {} and {i1, i2, . . . , ir} ∩ (V \ S) 6= {}. We denote the hy-

pergraph induced by the collection of such r-tuples as H[S, V \ S].

3. Allow a monotone adversary to add r-hyperedges arbitrarily to H[S, V \S] and hypergraph

induced on V \ S denoted by H[V \ S].

We introduce the following definition (from [KLP21, Kha21]) for notational convenience.

Definition 4.2 Let f(r)
def
=
r5/223r−2e3r/2−2

√
3

.

52

We relax the notion of recovery as in [MMT20] and allow a partial recovery by which we

mean that we output an independent set of size (1 − ε)k for given ε ∈ (0, 1) which does not

have to be the planted independent set. Formally we prove,

Theorem 4.1 There exists a deterministic algorithm which takes as input ε ∈ (0, 1) and an

instance of Definition 4.1 satisfying

k ≥ max

{
r22r+2er

3p
,
(2rf(r))1/(r−0.5)n(r−1)/(r−0.5)

ε1/(r−0.5)p1/(2r−1)

}
,

has running time nO(r), and outputs an independent set of size at least (1 − ε)k, with high

probability (over the randomness of the input).

Related Works

The work [HL98b] gives a combinatorial algorithm for the maximum independent set problem

to obtain an approximation ratio of O

(
n/
(

log(r−1) n
)2
)

for a r-uniform hypergraph where

log(r) n denotes a r-fold repeated application of logarithm as log . . . log n. This has been im-

proved by Halldórsson in the work [Hal00] where they study the problem on arbitrary weighted

hypergraphs and give an O (n/ log n) approximation algorithm that runs in poly (n,m) time

where m denotes the number of hyperedges. From here onwards, a lot of work has been done

in studying the problem in special classes of graphs. In this section, we do a brief survey of

these results.

The problem has been extensively studied for 3-uniform hypergraphs which contain an

independent set of size γn. Krivelevich, Nathaniel, and Sudakov [KNS01] give an SDP-based

algorithm that finds an independent set of size Ω̃ (min (n, n6γ−3)) for γ ≥ 1/2. The work by

Chlamtac [Chl07] uses an SDP relaxation with the third level of the Lasserre/SoS hierarchy and

returns an independent set of size Ω
(
n1/2−γ). Chlamtac and Singh [CS08] gave an algorithm

which computes an independent set of size nΩ(γ2) (where γ ≥ 0 is a constant) using Θ(1/γ2)

levels of a mixed hierarchy which they called the intermediate hierarchy.

Halldórsson and Losievskaja [HL09] study the problem on bounded degree hypergraphs. For

hypergraphs with degree bounded by ∆, the authors show that the classical greedy set cover

algorithm can be analyzed to give (∆ + 1) /2 approximation. The work [KMM11a] shows that

the bounded degree case is Unique Games-hard to approximate within a factor of O
(
∆/ log2 ∆

)
.

In a recent work [BK19], the authors exhibit how to convert this inapproximability factor of

O
(
∆/ log2 ∆

)
under UG-hardness to NP-hardness.

The work [KLP21, Kha21] studies the maximum independent set problem in r-uniform

53

hypergraphs in [FK01] model. They consider a different relaxation of recover in the [FK01]

model where they output a list of independent sets, one out of which is exactly the planted

independent set w.h.p. They give recovery algorithms for k = Ω
(
n(r−1)/(r−0.5)/p3/(2r−1)

)
. We

note that our regimes of k, n, p in ?? is wider, however our notion of relaxation for recovery is

different from theirs.

Lasserre/SOS Relaxation:

Theorem 4.1 generalizes to hypergraphs the analogous results for graphs by [MMT20]. Our

proofs of these theorems are based on rounding “crude-SDP” in [MMT20] , augmented with

“Lasserre/SoS like” hierarchy of constraints. Crude SDP is an idea developed by Kolla,

Makarychev, and Makarychev, where the relaxation is written so that the vectors correspond-

ing to the planted solution are clustered together. Crude-SDP has been used in the works

[KMM11b, MMV12, MMT20]. The Lasserre/SoS hierarchy has been used in designing approx-

imation algorithms for various problems as discussed in Chapter 2. The first step is to extend

the crude-SDP in [MMT20] to r-uniform hypergraphs and we present our extension in SDP 4.1.

SDP 4.1

max
∑

{i1,i2,...,ir}∈(Vr)

‖xi1,i2,...,ir‖
2

subject to

‖xi‖2 = 1 ∀i ∈ V (4.1)

‖xe‖2 = 0 ∀e ∈ E (4.2)

〈xI , xJ〉 = ‖xI∪J‖2 ∀I, J(6= ∅) ⊆ V, s.t |I ∪ J | ≤ r + 1 (4.3)

〈xu, xI〉 ≥ 〈xu, xJ〉 ∀u ∈ V, ∀I ⊆ J ⊆ V, |J | ≤ r + 1 (4.4)

1− ‖xu,v1,...,vr‖
2 ≤

∑
i∈[r]

(
1− ‖xu,vi‖

2) ∀ {u, v1, . . . , vr} ∈
(

V

r + 1

)
. (4.5)

We let the optimal solution of the above SDP be denoted by {x∗I}I⊂V,1≤|I|≤r+1. In [MMT20]

they study a crude-SDP with the constraint 〈xi, xj〉 = 0,∀ {i, j} ∈ E. Their crude SDP tries to

cluster the vertices together, while the constraint 〈xi, xj〉 = 0, {i, j} ∈ E tries to ensure that no

edges are contained in a cluster. Constraint 4.2 is a natural extension of this to hypergraphs. We

add vectors for all subsets of vertices of size at most r+ 1, and add consistency constraints 4.3

among them, as in the Lasserre/SoS hierarchy. However, we note that SDP 4.1 is different from

a Lasserre/SoS relaxation since there is no natural interpretation of solution to this crude-SDP

54

as a low-degree pseudo-distribution over independent sets in the hypergraph. However, we add

the constraints in equation 4.3,4.4 and 4.5 since our intended feasible solution x′ constructed

as,

x′i1,i2,...,il =


ê if {i1, i2, ..., il} ∈

(
S
l

)
x∗i1,i2,...,il if {i1, i2, ..., il} ∈

(
V \S
l

)
∀l ∈ [r + 1]

0 otherwise

(4.6)

where ê denote a unit vector orthogonal to x∗I , ∀I ⊆ V \S, |I| ≤ r and x∗ is the optimal solution

to the SDP. satisfies these constraints. The constraints in eq. (4.4) and eq. (4.5) are inspired from

the locally consistent probability distributions viewpoint of a r-level Lasserre/SoS hierarchy

[Rot13]. A t-level vector in a Lasserre/SoS hierarchy can be interpreted as the probability of

the joint event corresponding to indices of the vector. Constraint 4.4 corresponds to the fact

that the probability of a sub event can only be larger than the probability of an event and

constraint 4.5 corresponds to a union bound on the complement of the joint event (represented

by xu,v1,...,vr) given by sum of the complement of pairwise joint events 1− xu,vi ∀i ∈ [r].

4.1 SDP Bounding

Our analysis uses the SDP bounding idea where we prove a lower bound on the contribution of

the SDP mass in the optimal solution from the r-level vectors of S, i.e. {x∗I}I⊂S,|I|=r. We use

the following,

Lemma 4.1 [KLP21, Kha21]

∑
{i1i2...ir}∈(Sr)

∥∥x∗i1,i2,...,ir∥∥2
+

∑
{i1,i2,...,ir}∈∂(S)

∥∥x∗i1,i2,...,ir∥∥2 ≥
(
k

r

)
.

where the lower bound comes from the constructed solution in eq. (4.6). The key thing here is

that the crude-SDP has allowed us to remove the contribution from V \S which corresponds to

the part of graph that was fully controlled by adversary as defined in Definition 4.1. Similar to

[MMT20], this just follows by comparing the constructed solution to the optimal solution and

using the fact that the optimal will always have a larger objective value. We refer to the full

version of the paper [KLP21] for the proof. However, some new ideas are required to bound

the second term in hypergraphs.

As discussed, upper bounding the contribution from S× (V \S), will give us a lower bound

on the contribution from S. In [MMT20], S × (V \ S) is a random bipartite graph; they use

Grothendieck’s inequality and concentration bounds to upper bound the contribution from this

55

part. In our setting, S × (V \ S) is a random hypergraph, and [MMT20]’s techniques do not

seem to be directly applicable here. The main idea is to construct a random bipartite graph

G′ = (U1, U2, E
′) based on this random bipartite hypergraph as follows. One side of the graph

consists of vertices corresponding to subsets of S of cardinality at most r−1, and the other side

consists of vertices corresponding to subsets of V \S of cardinality at most r−1. We add an edge

between two vertices if the union of the sets corresponding to them forms a hyperedge in our

hypergraph. By this construction,
∑
{a,b}∈E′ 〈xa, xb〉 is equal to the SDP mass from S× (V \S)

in our hypergraph. Moreover, since S × (V \ S) forms a random bipartite hypergraph, this

construction gives us that G′ is a random bipartite graph. Therefore, this can be used to bound

the contribution from G′ using [MMT20]’s approach (Proposition 4.1).

Proposition 4.1 [KLP21, Kha21] For k ≥ r22r+2er

3p
,

∑
{i1,i2,...,ir}∈∂(S)

∥∥x∗i1,i2,...,ir∥∥2 ≤
(

23r−2e3r/2−2

√
3rr−5/2

)(√
k

p

)
nr−1 .

with high probability (over the randomness of the input).

We refer to the full version of the paper [KLP21] for a proof of this. Using lemma 4.1 we

get that,

Corollary 4.1 [KLP21, Kha21] For k ≥ r22r+2er

3p
,

∑
{i1,i2,...,ir}∈(Sr)

∥∥x∗i1,i2,...,ir∥∥2 ≥
(
k

r

)
−
(

23r−2e3r/2−2

√
3rr−5/2

)(√
k

p

)
nr−1 .

with high probability (over the randomness of the input).

4.2 Algorithm for computing a large independent set

In this section, we will prove Theorem 4.1 which is a generalization of Theorem 1.1 of [MMT20]

to r-uniform hypergraphs (Lemma 4.2, Lemma 4.3 and proof of Theorem 4.1). We will crucially

use the lower bound on the SDP mass from the vectors in S, i.e., Corollary 4.1. As a first step

towards this, in Lemma 4.2, we show that there exists a vertex u ∈ S for which the 1 level

vectors x∗v (corresponding to vertices in S) in the optimal solution have a large projection on

x∗u.

56

Fact 4.1 (Bounds on Binomial Coefficient, Appendix C - [CLRS09]) For 1 ≤ k ≤ n,

(n
k

)k
≤
(
n

k

)
≤
(en
k

)k
.

Lemma 4.2 For k ≥ r22r+2er

3p
, there exists a vertex u ∈ S such that, with high probability

(over the randomness of the input).

Ev∈S\{u} 〈x∗u, x∗v〉 ≥ E{i1,i2,...,ir−1}∼(S\{u}r−1)
〈
x∗u, x

∗
i1,i2,...,ir−1

〉
≥ 1− f(r)nr−1

kr−0.5
√
p
.

Proof: From Corollary 4.1 we have that for k ≥ r22r+3er

3p
,

∑
{i1,i2,...,ir}∈(Sr)

∥∥x∗i1,i2,...,ir∥∥2 ≥
(
k

r

)
− f(r)nr−1

√
k

rr
√
p

.

From the SDP constraint 4.3, we split the above sum as follows,

∑
u∈S,{i1,i2,...,ir−1}∈(S\{u}r−1)

〈
x∗u, x

∗
i1,i2,...,ir−1

〉
≥ r

((
k

r

)
− f(r)nr−1

√
k

rr
√
p

)
. (4.7)

Therefore there exists a vertex u ∈ S such that,

∑
{i1,i2,...,ir−1}∈(S\{u}r−1)

〈
x∗u, x

∗
i1,i2,...,ir−1

〉
≥ r

k

((
k

r

)
− f(r)nr−1

√
k

rr
√
p

)
.

Since number of terms in expression in the above sum is
(
k−1
r−1

)
. We rewrite the above expression

as an expectation over the uniform distribution on such tuples as,

E{i1,i2,...,ir−1}∼(S\{u}r−1)
〈
x∗u, x

∗
i1,i2,...,ir−1

〉
≥ r

k
(
k−1
r−1

) ((k
r

)
− f(r)nr−1

√
k

rr
√
p

)
= 1− rf(r)nr−1

√
k

k
(
k−1
r−1

)
rr
√
p

≥ 1− rf(r)nr−1
√
k

k

(
k − 1

r − 1

)r−1

rr
√
p

≥ 1− rf(r)nr−1
√
k

k

(
k

r

)r−1

rr
√
p

= 1− f(r)nr−1

kr−0.5
√
p
.

57

where we used Fact 4.1 and the fact that, (k − 1)/(r − 1) ≥ k/r ⇐⇒ k ≥ r.

Using our SDP constraint 4.4 we can rewrite the summation in eq. (4.7) as,

∑
u∈S,{i1,i2,...,ir−1}∈(S\{u}r−1)

〈
x∗u, x

∗
i1,i2,...,ir−1

〉
≤ 1

(r − 1)

∑
u∈S,{i1,i2,...,ir−1}∈(S\{u}r−1)

r−1∑
l=1

〈
x∗u, x

∗
il

〉

=

(
k−2
r−2

)
(r − 1)

∑
u∈S,v∈S\{u}

〈x∗u, x∗v〉 (4.8)

where the equality above can be argued by fixing a vertex u ∈ S, v ∈ S \{u} and observing that

there are
(
k−2
r−2

)
terms in the double summation containing such (u, v). We divide the eq. (4.8)

by k
(
k−1
r−1

)
(the number of terms in the summation on the left side) to rewrite the inequality in

form of expectation as,

E{i1,i2,...,ir−1}∼(S\{u}r−1)
〈
x∗u, x

∗
i1,i2,...,ir−1

〉
≤

(
k−2
r−2

)
(r − 1)k

(
k−1
r−1

) ∑
u∈S,v∈S\{u}

〈x∗u, x∗v〉

=
1

k(k − 1)

∑
u∈S,v∈S\{u}

〈x∗u, x∗v〉 = Ev∈S\{u} 〈x∗u, x∗v〉

where we have used the fact that
(
k−1
r−1

)
= k−1

r−1

(
k−2
r−2

)
. It then follows that there exists a vertex

u ∈ S such that

Ev∈S\{u} 〈x∗u, x∗v〉 ≥ 1− f(r)nr−1

√
pkr−0.5

2

Lemma 4.2 shows that a large fraction of the 1-level vectors in S have a large projection on

x∗u. We start with the following definition (similar to [KLP21, Kha21]),

Definition 4.3 We denote the set of all l-tuples containing vertices from a set T ⊆ V (where

l ≤ |T |) whose corresponding vectors have a projection at least R with the vector x∗u by

Bu(l,R, T)
def
=

{
{v1, v2, . . . , vl} : {v1, v2, . . . , vl} ∈

(
T

l

)
and

〈
x∗u, x

∗
v1,v2,...,vl

〉
≥ R

}
.

Note that the value of l of interest will be 1 in Theorem 4.1.

58

Lemma 4.3 For k ≥ r22r+2er

3p
, there exists a vertex u ∈ S such that

∣∣∣∣Bu

(
1, 1− 1

2r
, S

)∣∣∣∣ ≥ (k − 1)

(
1− 2rf(r)nr−1

√
pkr−0.5

)
with high probability (over the randomness of the input).

Proof: We note that 1− 〈x∗u, x∗v〉 ≥ 0 and for R ∈ (0, 1) and for k ≥ r22r+3er

3p
, by applying

Markov’s inequality on (1− 〈x∗u, x∗v〉), where u is the vertex guaranteed in Lemma 4.2 and

v ∈ V \ S we have that,

Pv∈S\{u} [1− 〈x∗u, x∗v〉 > 1− R] <

f(r)nr−1

√
pkr−0.5

1− R
. (using Lemma 4.2)

We can rewrite the above expression as the fraction of vertices which satisfy (〈x∗u, x∗v〉 < R),

since the underlying distribution is the uniform distribution over all such v and by setting

R = 1− 1/2r, ∣∣∣∣v ∈ S \ {u} : 〈x∗u, x∗v〉 < 1− 1

2r

∣∣∣∣ < (k − 1)

(
2rf(r)nr−1

√
pkr−0.5

)
.

∴

∣∣∣∣Bu

(
1, 1− 1

2r
, S

)∣∣∣∣ =

∣∣∣∣v ∈ S \ {u} : 〈x∗u, x∗v〉 ≥ 1− 1

2r

∣∣∣∣ ≥ (k − 1)

(
1− 2rf(r)nr−1

√
pkr−0.5

)
.

2

In [MMT20] they use the SDP constraint 〈xu, xv〉 = 0,∀ {u, v} ∈ E to show that the

set of vectors which have a large projection on x∗u is an independent set. Therefore they

directly analyze the bound on the size of the set to obtain an independent set, in a range

of p such that it covers at least (1− ε) fraction of vertices in S. However, in our setting, we

are unable to guarantee directly that this set of vectors is an independent set. We crucially

use the Lasserre/SoS like SDP constraints 4.3 and 4.5 and an appropriately large value of R

(R ≥ 1− 1
2r

) to show that the set guaranteed in Lemma 4.3 is an independent set.

Lemma 4.4 For k ≥ r22r+2er

3p
, there exists a vertex u ∈ S such that Bu

(
1, 1− 1

2r
, V

)
is an

independent set with high probability (over the randomness of the input).

Proof: We consider the SDP constraint 4.5 and apply it to our optimal solution x∗ . By

using consistency constraints (〈xI , xJ〉 = 〈xI′ .xJ ′〉 ,∀I ∪ J = I ′ ∪ J ′) (eq. (4.3)) we can rewrite

59

the constraint in Equation (4.5) as,

1−
∥∥x∗u,i1,...,ir∥∥2 ≤

∑
l∈[r]

(
1−

〈
x∗u, x

∗
il

〉)
. (4.9)

For k ≥ r22r+3er

3p
, if we pick any set of r vertices {i1, . . . , ir} ∈

(
V
r

)
in Bu

(
1, 1− 1

2r
, V

)
(where

u is the vertex guaranteed in Lemma 4.3) we know that
〈
x∗u, x

∗
il

〉
≥ 1 − 1

2r
,∀l ∈ [r]. By using

eq. (4.9) we have that,

∥∥x∗u,i1,...,ir∥∥2 ≥ 1−
∑
l∈[r]

(
1−

〈
x∗u, x

∗
il

〉)
≥ 1−

∑
l∈[r]

1

2r
≥ 1

2
> 0 . (4.10)

Now we examine the term
∥∥x∗i1,i2,...,ir∥∥2

for these {i!, . . . , ir} and we have that,

∥∥x∗i1,i2,...,ir∥∥2
=
〈
x∗i1 , x

∗
i2...,ir

〉
≥
〈
x∗i1 , x

∗
u,i2...,ir

〉
=
∥∥x∗u,i1,...,ir∥∥2

> 0

where the equality holds by consistency constraints, the first inequality above holds by con-

straint 4.4 and the last inequality holds by eq. (4.10). Hence for any r-tuple {i1, i2, . . . , ir} ⊆

Bu

(
1, 1− 1

2r
, V

)
, we have

∥∥x∗i1,i2,...,ir∥∥2
> 0. Therefore by SDP constraint 4.2, it cannot form

a hyperedge. Hence, the set of vertices in Bu

(
1, 1− 1

2r
, V

)
is an independent set. 2

We introduce a definition from [KLP21, Kha21],

Definition 4.4 Let Su denote the set of vertices formed by the union of all vertices by reading

off the indices from the tuples of the set, Bu(l, r, V).

Now, we have all the ingredients to prove our main result. We present the complete algorithm

below (similar to [KLP21, Kha21]) and the proof of Theorem 4.1.

60

Algorithm 3:

Require: H = (V,E), l ∈ [r], and R ∈ (0, 1).

Ensure: A list of independent sets in H.

1: Solve SDP 4.1.

2: for all u ∈ V do

3: Initialize Su denote the union of set of vertices from the tuples in Bu(l,R, V).

4: S′u = {u} ∪ Su. If S′u is not an independent set,

Set S′u = ∅ and skip this iteration.

5: for all v ∈ V \ Su do

6: Add vertex v to S′u if S′u ∪ {v} is an independent set.

7: end for

8: end for

9: Return {S′u}u∈V .

We set our parameters (n, p, k, ε) appropriately and show that the number of vertices in Bu

along with the vertex u (denoted by S′u) cover 1− ε fraction of vertices in S.

Proof: [Proof of Theorem 4.1] We run the Algorithm 3 with the inputs, H, l = 1 and

R = 1− 1

2r
to get {S′u}u∈V . In Lemma 4.3 we show that

∣∣∣∣Bu

(
1, 1− 1

2r
, S

)∣∣∣∣ ≥ (k − 1)

(
1− 2rf(r)nr−1

√
pkr−0.5

)
.

For a suitable choice of parameters we wish to have,∣∣∣∣Bu

(
1, 1− 1

2r
, S

)∣∣∣∣ ≥ (k − 1)(1− ε) . (4.11)

We can then include in the vertex u to our independent set and we get

|S′u| ≥ |Su|+ 1 =

∣∣∣∣Bu

(
1, 1− 1

2r
, V

)∣∣∣∣+ 1 ≥
∣∣∣∣Bu

(
1, 1− 1

2r
, S

)∣∣∣∣+ 1

≥ (k − 1)(1− ε) + 1 ≥ k(1− ε) .

We note that by setting k ≥ (2rf(r))1/(r−0.5)n(r−1)/(r−0.5)

ε1/(r−0.5)p1/(2r−1)
, equation 4.11 is satisfied and hence

we can recover an independent set of size (1− ε)k for all ε ∈ (0, 1). 2

Acknowledgments: The work in this chapter is based on joint work with Yash Khanna and

Anand Louis [KLP21]. Theorem 1.2 of [KLP21] appears in [Kha21] and Theorem 1.3 of this

61

work is presented here (Theorem 4.1).

62

Chapter 5

Largest Induced Planar Subgraph

In this chapter, we study the problem of finding the largest induced planar subgraph of a given

graph G = (V,E). The model is constructed as per the planted solution model (Definition 1.1).

Problem 5.1 Given a graph G = (V,E), the largest induced planar subgraph problem asks us

to find a maximal set S ⊆ V such that the subgraph induced on S is planar.

Related Works

The worst-case analysis gives us that the largest induced planar subgraph problem is NP-hard

owing to the hereditary structure of planar graphs (follows from [Yan78]). The work by [LY93]

shows that there exists an ε > 0 such that this problem cannot be approximated with ratio nε in

polynomial time unless P=NP. The work [Hal00] gives O
(
n−1 (log n/ log log n)2) approximation

algorithm for the problem.

The work [HL98a] studies the problem for graphs with degree bounded by d and gives a

linear time algorithm with approximation ratio 1/d(d+ 1)/3e. This was improved1 in the work

[EF02] which gives a 3/(d+ 1) approximation algorithm that runs in time O (mn).

The problem is equivalent to the nonplanar vertex deletion problem where the task is to

remove minimum number of vertices whose removal leaves a planar graph. The work [FdFG+06]

shows that the problem is NP-hard even when restricted to cubic graphs. They also show

that there exists no constant factor approximation algorithm unless P=NP. The work [RS95]

gives a fixed parameter tractable algorithm with running time O (f(k)n3) where the parameter

k is the number of vertices required to be deleted. The work [KS17a] gives a O
(
log32 n

)
-

approximation algorithm with running time nO(logn/(log logn)) and an order O (nε)-approximation

algorithm running in time nO(1/ε) for any constant ε > 0.

1Improvement for the case when d mod 3 6= 2.

63

A related problem is the nonplanar edge deletion which is equivalent to finding maximum

planar subgraph. This problem was also shown to be NP-hard in the work [LG79] but the work

[CFFK98] shows that it admits a 4/9 approximation algorithm.

Our Results

In this chapter we study Problem 5.1 in the planted solution model (Definition 1.1). We now

present our main result in this model.

Theorem 5.1 For k ≥ 224
√
n

p2
where p = Ω

(
log k

k

)
, there exists a deterministic algorithm

which given an instance generated as per Definition 1.1, returns a list of sets (of size O
(
nO(1/p)

)
)

such that atleast one set in the list is the planted set S with high probability (over the randomness

of the input) in time O
(
nO(1/p)

)
Proof Overview

We let A denote the adjacency matrix of the graph constructed for this problem as per the

planted solution model. We let B = Ā denote the adjacency matrix of the complement graph

so that A+ B = J − I. We consider an equivalent way of generating the graph corresponding

to matrix B (equivalent to the planted solution model) by the following series of steps,

1. Start with a random graph Gn,1−p and let the matrix corresponding to the graph so far

be denoted by BR.

2. Add edges in the planted region S × S such that we obtain a complete graph on S. The

distribution of the graph corresponding to edges added in this step is Gk,p and we denote

the matrix corresponding to this graph as BC .

3. Remove the edges corresponding to the edges in the planar graph AS×S. These are at

most 3k − 6 edges, and we denote the associated matrix by BW .

Hence, we can express the resulting matrix for the complement graph as

B = BR +BC +BW . (5.1)

The BW term is the only term that is different from the matrix corresponding to the planted

clique problem, and in Lemma 5.1 we show that ‖BW‖ = O
(√

k
)

. In the rest of Section 5.1, we

reproduce the calculations for the planted clique problem as in the work [AKS98, Tre17], and

recover (1− δ) fraction of vertices (we denote these set of vertices as T) of the planted set S

64

for given δ > 0. In Section 5.2 we do a post-processing step, by computing the degree of rest of

the vertices to the set T . Using this information, we recover all the low degree vertices (vertices

with degree ≤ pk/8) of S. These remaining high vertices are recovered by enumerating over all

possible sets of size O
(
nO(1/p)

)
.

5.1 Partial recovery of planted planar graph

The BW term in eq. (5.1) is the only term that is different from the matrix corresponding to

the planted clique problem. In order to use the analysis for the planted clique problem from

the works [AKS98, Tre17], we start by bounding the spectral norm of BW in Lemma 5.1.

Lemma 5.1 ‖BW‖2 ≤
√

6k.

Proof: Since the planted graph is planar, we know that it cannot have more than 3k − 6

edges. We then have that,

‖AS×S‖2 ≤ ‖AS×S‖F ≤
√

6k − 12 ≤
√

6k .

Now we are done simply by noting the way we have defined BW , i.e., BW = AS×S. 2

Lemma 5.2 For an instance of planted planar graph given by Definition 1.1 and a parameter

δ > 0 in regimes where k ≥ (28
√
n) /pδ, there exists a deterministic algorithm which can recover

at least (1− δ) fraction of the planted vertices in S.

Proof: We start by considering the matrix B − (1− p)J and using Fact 2.1, we note that,

‖B − (1− p)J‖2 ≥
1
T
SB1S
1
T
S1S

− (1− p)1
T
SJ1S
1
T
S1S

≥ k2 − k − 2(3k − 6)− (1− p)k2

k
≥ pk − 7 .

Using Claim 2.1 we have that almost surely,

‖BR − (1− p)J‖ ≤ 2
√
n and

∥∥BC − p1S1TS
∥∥ ≤ 2

√
k .

Using Lemma 5.1 we have that,

‖BW‖ ≤
√

6k ≤ 3
√
k .

Now let x be the eigenvector corresponding to largest eigenvalue of B − (1− p)J and putting

65

everything together and setting ‖x‖ = 1 we obtain that,

xT (B − (1− p)J)x = xT
(
BR − (1− p)J +BC − p1S1TS + p1S1

T
S +BW

)
x .

Therefore we have that,

pxT
(
1S1

T
S

)
x ≥ pk − 7− 2

√
n− 5

√
k ≥ pk

(
1− δ

2

)
where the last inequality follows form our choice of k. Now taking square root on both sides

we obtain that,

〈x,1S〉 ≥
√
k

√
1− δ

2
≥
√
k

(
1− δ

4

)
and hence

∥∥∥√kx− 1S∥∥∥2

≤ 2k − 2
√
k 〈x,1S〉 ≤

δk

2
.

(5.2)

Let T be a set of k vertices formed by taking the absolute value of entries in the eigenvector

x and picking top k entries. We let t be the smallest entry in the set T and B
def
= S \T . Scaling

x by
√
k to compare with 1S, and using |xi| ≥ t/

√
k,∀i ∈ T we have that,∥∥∥√kx− 1S∥∥∥2

=
∑
i∈S

(√
kxi − 1

)2

+
∑
i/∈S

kx2
i ≥

∑
i∈S\T

(√
kxi − 1

)2

+
∑
i∈T\S

kx2
i

≥ |B| (1− t)2 + |B| t2 ≥ |B|
2

(
Using min

{
(1− t)2, (1 + t)2

}
= (1− t)2

)
.

(5.3)

where the last inequality follows from optimizing f(t) = (1− t)2 + t2 and noting that minimum

occurs for t = 1/2. Therefore, using eq. (5.2) and eq. (5.3) we have that |B| ≤ δk and we

recover (1− δ) fraction of vertices in planted set S. 2

5.2 Full recovery of planted planar graph

Let the set S ⊆ S be the set of vertices in S which have low degree (degree ≤ pk/8). As a first

step towards full recovery, we aim to recover this set S. We will identify the vertices in set S

by their degree to the set T .

Since the number of edges in S is 3k−6, the average degree of vertices in S is≤ 6. Expressing

the average as an expectation over uniform distribution over vertices in S and using Markov’s

66

inequality we have that,

P
[
deg(v, S) ≥ pk

8

]
≤ 48

pk
and therefore

∣∣∣∣v : deg(v, S) ≥ pk

8

∣∣∣∣ ≤ 48

p
.

Therefore |S \ S| ≤ 48/p. We recall our aim is to recover the vertices in set S, however, in

Lemma 5.3 we recover a set S′ which is a superset of S (may also contain vertices in the set

S \ S in addition to the set S). We do so by considering the degree of an vertex v to the set

T denoted by deg(v, T). However, T is not a fixed set but a function of the randomness of the

input instance. Therefore, computing the degree to set T doesn’t seem easy. Hence we compute

the degree of an arbitrary vertex to the set S instead.

Lemma 5.3 Given a set T of size k such that |S ∩ T | ≥ (1− δ) k for any δ > 0, in the regimes

of k ≥ 224
√
n

p2
and p = Ω

(
log k

k

)
Algorithm 4 outputs a list of sets (of size O

(
nO(1/p)

)
), one

out of which is the planted set S with high probability (over the randomness of the input).

Proof: For a vertex v in V \ S we have that,

E [deg(v, S)] = pk .

where the expectation is over the randomness of the input instance. Using Chernoff bounds

(Fact 2.3) we have that for a fixed vertex v ∈ V \ S,

P
[
deg(v, S) ≤ pk

2

]
≤ exp

(
−pk

4

)
.

We do a union bound over all vertices v ∈ V \ S and we get that,

P
[
∃v ∈ V \ S : deg(v, S) ≤ pk

2

]
≤ n exp

(
−pk

4

)
.

Therefore with high probability (over the randomness of the input instance) and for p =

Ω (log k/k), for any vertex v ∈ V \ S we have that deg(v, S) ≥ pk/2.

deg(v, T) ≥ deg(v, S)− |S \ T | ≥ pk

2
− δk .

While for a vertex v ∈ S we have,

deg(v, T) ≤ deg(v, S) + |S \ T | ≤ pk

8
+ δk .

67

Therefore, we can distinguish the set to which a vertex belongs if,

pk

8
+ δk <

pk

2
− δk which holds if δk ≤ pk

8
.

For the remaining O (1/p) set of vertices which belong to the set S \ S′, we simply enumerate

over all possible sets of vertices of size ≤ 48/p and add to the set S′ if it forms a planar graph.

Therefore, we return a list of planar graphs, one out of which is the planted planar graph with

high probability (over the randomness of the input). The running time of the algorithm there-

fore is O
(
nO(1/p)

)
. 2

Proof: [Proof of Theorem 5.1] Given an instance of a planted planar graph as per Definition 1.1,

for k ≥ (224
√
n) /p2, using Lemma 5.2 we can recover (1− δ) k vertices for δ ≤ p/8. Using

guarantees of Lemma 5.3 we can then output a list L of size O
(
nO(1/p)

)
having planar graphs,

one out of which is the planted planar graph S. 2

Next, we present our algorithm based on guarantees of Theorem 5.1.

Algorithm 4:

Require: Given G = (V,E), p, k, n.

Ensure: A list of planar graphs.

1: Initialize L = φ.

2: Compute the largest eigenvector x of B − (1− p)J .

3: Let T be the set of vertices corresponding to top k entries in the eigenvector x when

sorted according to their absolute values.

4: Let S′ be the set of vertices which have their degree to T , deg(v, T) ≤ pk/4.

5: for all S ′ ⊆ V : |S ′| ≤ 48/p do

6: if S ′ ∪ S′ induces a planar subgraph then

7: L = L ∪ {S ′ ∪ S′}.
8: end if

9: end for

Acknowledgments: The work in this chapter is based on joint work with Akash Kumar and

Anand Louis.

68

Chapter 6

Conclusion

In this thesis, we study three graph problems, where the task is to find the largest induced

subgraph with some structure, namely the Largest induced planar subgraph problem, the Odd

Cycle Transversal problem, and the maximum independent set in hypergraph problem. The

worst-case instances of these problems are intractable, and hence we study them in various

random and semi-random models in Chapter 5, Chapter 3 and Chapter 4 respectively. We

conclude with a few open problems.

1. For the largest induced bipartite subgraph problem, we give an algorithm that works

for k = Ωp

(√
n log n

)
for a large enough range of p (includes regimes when p = o(1)).

Achieving exact recovery for k = Ω (
√
n) in p = o(1) regimes is still an open problem, to

the best of our knowledge. We believe our SDP 3.1 is integral even for k = Ωp (
√
n) and

leave the task of proving it as an open problem.

2. The [MMT20] style relaxation of [FK01] model where the algorithm is allowed to output

a list of n independent sets, that includes the planted independent set w.h.p is more

natural and arguably a weaker relaxation. Whether one can extend k = Ωp

(
n2/3

)
result

of [MMT20] in the largest induced bipartite subgraph problem is another interesting

question, unanswered to the best of our knowledge.

3. More generally, achieving recovery for k = o
(
n2/3

)
in [MMT20] style relaxation of [FK01]

model would imply an improvement for the planted clique/independent set problem.

Therefore, one could ask the same question for the special case of planted independent

set problem i.e. whether the gap between k = Ωp

(
n2/3

)
and k = Ωp (

√
n) (exact recovery

algorithms are known in the weaker sandwich model) can be closed. We refer to Chapter

9 in the book [Rou21] for an elaborate discussion on this.

69

4. For the problem of Maximum Independent sets in hypergraphs, one could ask whether

exact recovery is possible for k = Ωp (
√
n) in the weaker (in strength compared to [FK01]

model) but adversarial sandwich model. The degenerate graph version of the problem has

been solved by the work [FK00]. However, to the best of our knowledge, the problem in

hypergraphs is still open.

70

Bibliography

[ABBS14] Emmanuel Abbe, Afonso S. Bandeira, Annina Bracher, and Amit Singer. Decoding

binary node labels from censored edge measurements: phase transition and efficient

recovery. IEEE Trans. Network Sci. Eng., 1(1):10–22, 2014. 17, 26

[ABH16] Emmanuel Abbe, Afonso S. Bandeira, and Georgina Hall. Exact recovery in the

stochastic block model. IEEE Trans. Inform. Theory, 62(1):471–487, 2016. 5, 6,

17, 26

[ACMM05] Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury Makarychev.

O(
√

log n) approximation algorithms for Min UnCut, Min 2CNF deletion, and di-

rected cut problems. In STOC’05: Proceedings of the 37th Annual ACM Symposium

on Theory of Computing, pages 573–581. ACM, New York, 2005. 21

[AG11] Sanjeev Arora and Rong Ge. New tools for graph coloring. In Approximation,

randomization, and combinatorial optimization, volume 6845 of Lecture Notes in

Comput. Sci., pages 1–12. Springer, Heidelberg, 2011. 24, 27

[AK97] Noga Alon and Nabil Kahalé. A spectral technique for coloring random 3-colorable

graphs. SIAM J. Comput., 26(6):1733–1748, 1997. 5, 6

[AKRR90] A. Agrawal, P. Klein, S. Rao, and R. Ravi. Approximation through multicommodity

flow. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science,

pages 726–737 vol.2, Los Alamitos, CA, USA, oct 1990. IEEE Computer Society.

21

[AKS98] Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding a large hidden clique

in a random graph. In Proceedings of the Eighth International Conference “Random

Structures and Algorithms” (Poznan, 1997), volume 13, pages 457–466, 1998. 2, 3,

22, 23, 64, 65

71

BIBLIOGRAPHY

[AM99] Claudio Arbib and Raffaele Mosca. Polynomial algorithms for special cases of the

balanced complete bipartite subgraph problem. JCMCC. The Journal of Combi-

natorial Mathematics and Combinatorial Computing, 30, 01 1999. 18

[AP89] Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for NP-hard

problems restricted to partial k-trees. Discrete Appl. Math., 23(1):11–24, 1989. 1

[ARV04] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embed-

dings and graph partitioning. In Proceedings of the 36th Annual ACM Symposium

on Theory of Computing, pages 222–231. ACM, New York, 2004. 17

[BCC+10] Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vi-

jayaraghavan. Detecting high log-densities—an O(n1/4) approximation for densest

k-subgraph. In STOC’10—Proceedings of the 2010 ACM International Symposium

on Theory of Computing, pages 201–210. ACM, New York, 2010. 6, 17

[BHK+16] Boaz Barak, Samuel B. Hopkins, Jonathan Kelner, Pravesh Kothari, Ankur Moitra,

and Aaron Potechin. A nearly tight sum-of-squares lower bound for the planted

clique problem. In 57th Annual IEEE Symposium on Foundations of Computer

Science—FOCS 2016, pages 428–437. IEEE Computer Soc., Los Alamitos, CA,

2016. 8, 22

[BK09] Nikhil Bansal and Subhash Khot. Optimal long code test with one free bit. In

2009 50th Annual IEEE Symposium on Foundations of Computer Science—FOCS

2009, pages 453–462. IEEE Computer Soc., Los Alamitos, CA, 2009. 21

[BK19] Amey Bhangale and Subhash Khot. UG-Hardness to NP-Hardness by Losing Half.

In Amir Shpilka, editor, 34th Computational Complexity Conference (CCC 2019),

volume 137 of Leibniz International Proceedings in Informatics (LIPIcs), pages 3:1–

3:20, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

53

[BL12] Yonatan Bilu and Nathan Linial. Are stable instances easy? Combin. Probab.

Comput., 21(5):643–660, 2012. 1

[Bod88] Hans L. Bodlaender. Dynamic programming on graphs with bounded treewidth.

In Automata, languages and programming (Tampere, 1988), volume 317 of Lecture

Notes in Comput. Sci., pages 105–118. Springer, Berlin, 1988. 1

72

BIBLIOGRAPHY

[Bop87] Ravi B. Boppana. Eigenvalues and graph bisection: An average-case analysis (ex-

tended abstract). In 28th Annual Symposium on Foundations of Computer Science,

Los Angeles, California, USA, 27-29 October 1987, pages 280–285. IEEE Computer

Society, 1987. 6

[BS95] Avrim Blum and Joel Spencer. Coloring random and semi-random k-colorable

graphs. J. Algorithms, 19(2):204–234, 1995. 3, 5

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge Uni-

versity Press, Cambridge, 2004. 9, 16, 39

[CC00] Yizong Cheng and George M. Church. Biclustering of expression data. In Philip E.

Bourne, Michael Gribskov, Russ B. Altman, Nancy Jensen, Debra A. Hope, Thomas

Lengauer, Julie C. Mitchell, Eric D. Scheeff, Chris Smith, Shawn Strande, and Helge

Weissig, editors, ISMB, pages 93–103. AAAI, 2000. 18

[CFFK98] Gruia Călinescu, Cristina G. Fernandes, Ulrich Finkler, and Howard Karloff. A

better approximation algorithm for finding planar subgraphs. volume 27, pages 269–

302. 1998. 7th Annual ACM-SIAM Symposium on Discrete Algorithms (Atlanta,

GA, 1996). 64

[Chl07] E. Chlamtac. Approximation algorithms using hierarchies of semidefinite program-

ming relaxations. In 48th Annual IEEE Symposium on Foundations of Computer

Science (FOCS’07), pages 691–701, 2007. 17, 53

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to algorithms. MIT Press, Cambridge, MA, third edition, 2009. 57

[CO07] Amin Coja-Oghlan. Colouring semirandom graphs. Combin. Probab. Comput.,

16(4):515–552, 2007. 6, 17, 26

[CS08] Eden Chlamtac and Gyanit Singh. Improved approximation guarantees through

higher levels of SDP hierarchies. In Approximation, randomization and combina-

torial optimization, volume 5171 of Lecture Notes in Comput. Sci., pages 49–62.

Springer, Berlin, 2008. 17, 53

[CX16] Yudong Chen and Jiaming Xu. Statistical-computational tradeoffs in planted prob-

lems and submatrix localization with a growing number of clusters and submatrices.

J. Mach. Learn. Res., 17:Paper No. 27, 57, 2016. 22, 33

73

BIBLIOGRAPHY

[CZ20] Sam Cole and Yizhe Zhu. Exact recovery in the hypergraph stochastic block model:

a spectral algorithm. Linear Algebra Appl., 593:45–73, 2020. 6

[DF16] Roee David and Uriel Feige. On the effect of randomness on planted 3-coloring

models. In STOC’16—Proceedings of the 48th Annual ACM SIGACT Symposium

on Theory of Computing, pages 77–90. ACM, New York, 2016. 6

[DK70] Chandler Davis and W. M. Kahan. The rotation of eigenvectors by a perturbation.

III. SIAM J. Numer. Anal., 7:1–46, 1970. 11

[EF02] Keith Edwards and Graham Farr. An algorithm for finding large induced planar

subgraphs. In Graph drawing (Vienna, 2001), volume 2265 of Lecture Notes in

Comput. Sci., pages 75–83. Springer, Berlin, 2002. 63

[Epp94] David Eppstein. Arboricity and bipartite subgraph listing algorithms. Inform.

Process. Lett., 51(4):207–211, 1994. 22

[FdFG+06] Luerbio Faria, Celina M. Herrera de Figueiredo, Sylvain Gravier, Candido F. X.

de Mendonça, and Jorge Stolfi. On maximum planar induced subgraphs. Discrete

Appl. Math., 154(13):1774–1782, 2006. 63

[FG95] U. Feige and M. Goemans. Approximating the value of two power proof systems,

with applications to max 2sat and max dicut. In Proceedings Third Israel Sympo-

sium on the Theory of Computing and Systems, pages 182–189, 1995. 17

[FGR+13] Vitaly Feldman, Elena Grigorescu, Lev Reyzin, Santosh S. Vempala, and Ying

Xiao. Statistical algorithms and a lower bound for detecting planted cliques. In

STOC’13—Proceedings of the 2013 ACM Symposium on Theory of Computing,

pages 655–664. ACM, New York, 2013. 8, 22

[FK00] Uriel Feige and Robert Krauthgamer. Finding and certifying a large hidden clique

in a semirandom graph. Random Structures Algorithms, 16(2):195–208, 2000. 4,

17, 22, 26, 70

[FK01] Uriel Feige and Joe Kilian. Heuristics for semirandom graph problems. volume 63,

pages 639–671. 2001. Special issue on FOCS 98 (Palo Alto, CA). iii, vii, 4, 5, 6, 7,

8, 17, 18, 19, 21, 26, 48, 52, 54, 69, 70

[FK04] Uriel Feige and Shimon Kogan. Hardness of approximation of the balanced complete

bipartite subgraph problem. Technical report, 2004. 21

74

BIBLIOGRAPHY

[FKP19] Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semialgebraic proofs and ef-

ficient algorithm design. Found. Trends Theor. Comput. Sci., 14(1-2):front matter,

1–221, 2019. 9

[FLS+18] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, Micha lPilipczuk, and Marcin

Wrochna. Fully polynomial-time parameterized computations for graphs and ma-

trices of low treewidth. ACM Trans. Algorithms, 14(3):Art. 34, 45, 2018. 1

[FR10] Uriel Feige and Dorit Ron. Finding hidden cliques in linear time. In 21st Inter-

national Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the

Analysis of Algorithms (AofA’10), Discrete Math. Theor. Comput. Sci. Proc., AM,

pages 189–203. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2010. 22

[GJ79] Michael R. Garey and David S. Johnson. Computers and intractability. A Series

of Books in the Mathematical Sciences. W. H. Freeman and Co., San Francisco,

Calif., 1979. A guide to the theory of NP-completeness. 21

[GL21] Suprovat Ghoshal and Anand Louis. Approximation Algorithms and Hardness for

Strong Unique Games, pages 414–433. 01 2021. 21

[GLR19] Suprovat Ghoshal, Anand Louis, and Rahul Raychaudhury. Approximation algo-

rithms for partially colorable graphs. In Approximation, randomization, and com-

binatorial optimization. Algorithms and techniques, volume 145 of LIPIcs. Leibniz

Int. Proc. Inform., pages Art. No. 28, 20. Schloss Dagstuhl. Leibniz-Zent. Inform.,

Wadern, 2019. 21, 24, 27, 32

[GM75] G. R. Grimmett and C. J. H. McDiarmid. On colouring random graphs. Math.

Proc. Cambridge Philos. Soc., 77:313–324, 1975. 2

[GVY98] Naveen Garg, Vijay Vazirani, and Mihalis Yannakakis. Approximate max-flow min-

(multi)cut theorems and their applications. SIAM Journal on Computing, 25, 01

1998. 21

[GW95] Michel X. Goemans and David P. Williamson. Improved approximation algorithms

for maximum cut and satisfiability problems using semidefinite programming. J.

Assoc. Comput. Mach., 42(6):1115–1145, 1995. 17

[Hal00] Magnús M. Halldórsson. Approximations of weighted independent set and heredi-

tary subset problems. J. Graph Algorithms Appl., 4:no. 1, 16, 2000. 53, 63

75

BIBLIOGRAPHY

[H̊as97] Johan H̊astad. Clique is hard to approximate within n1−ε. Electron. Colloquium

Comput. Complex., 4(38), 1997. 52

[HKP+17] Samuel B. Hopkins, Pravesh K. Kothari, Aaron Potechin, Prasad Raghavendra,

Tselil Schramm, and David Steurer. The power of sum-of-squares for detecting

hidden structures, 2017. 17

[HL98a] Magnús Halldórsson and Hoong Lau. Low-degree graph partitioning via local search

with applications to constraint satisfaction, max cut, and coloring. Journal of Graph

Algorithms and Applications, 1, 04 1998. 63

[HL98b] Thomas Hofmeister and Hanno Lefmann. Approximating maximum independent

sets in uniform hypergraphs. In Mathematical foundations of computer science,

1998 (Brno), volume 1450 of Lecture Notes in Comput. Sci., pages 562–570.

Springer, Berlin, 1998. 53

[HL09] Magnús M. Halldórsson and Elena Losievskaja. Independent sets in bounded-degree

hypergraphs. Discrete Appl. Math., 157(8):1773–1786, 2009. 53

[HLL83] Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic

blockmodels: first steps. Social Networks, 5(2):109–137, 1983. 6

[HSS15] Samuel B. Hopkins, Jonathan Shi, and David Steurer. Tensor principal component

analysis via sum-of-squares proofs, 2015. 17

[HSSS16] Samuel B. Hopkins, Tselil Schramm, Jonathan Shi, and David Steurer. Fast spec-

tral algorithms from sum-of-squares proofs: tensor decomposition and planted

sparse vectors, 2016. 17

[HWX16a] Bruce Hajek, Yihong Wu, and Jiaming Xu. Achieving exact cluster recovery thresh-

old via semidefinite programming. IEEE Trans. Inform. Theory, 62(5):2788–2797,

2016. 6

[HWX16b] Bruce Hajek, Yihong Wu, and Jiaming Xu. Achieving exact cluster recovery

threshold via semidefinite programming: extensions. IEEE Trans. Inform. The-

ory, 62(10):5918–5937, 2016. 6

[HWX16c] Bruce Hajek, Yihong Wu, and Jiaming Xu. Semidefinite programs for exact recov-

ery of a hidden community, 2016. 6

76

BIBLIOGRAPHY

[Joh87] David S Johnson. The np-completeness column: An ongoing guide. Journal of

Algorithms, 8(3):438–448, 1987. 21

[Kar72] Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103.

Springer US, Boston, MA, 1972. 52

[Kha21] Yash Khanna. Robust algorithms for recovering planted structures in semi-random

instances. Master’s thesis, Indian Institute of Science, 4 2021. 52, 53, 55, 56, 58,

60, 61

[KL20] Yash Khanna and Anand Louis. Planted models for the densest k-subgraph prob-

lem. In 40th IARCS Annual Conference on Foundations of Software Technology

and Theoretical Computer Science, volume 182 of LIPIcs. Leibniz Int. Proc. In-

form., pages Art. 27, 18. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2020.

7

[KLP21] Yash Khanna, Anand Louis, and Rameesh Paul. Independent sets in semi-random

hypergraphs. CoRR, abs/2104.00927, 2021. 6, 52, 53, 55, 56, 58, 60, 61

[KLT17] Akash Kumar, Anand Louis, and Madhur Tulsiani. Finding pseudorandom color-

ings of pseudorandom graphs. In 37th IARCS Annual Conference on Foundations

of Software Technology and Theoretical Computer Science, volume 93 of LIPIcs.

Leibniz Int. Proc. Inform., pages Art. No. 37, 12. Schloss Dagstuhl. Leibniz-Zent.

Inform., Wadern, 2017. 6, 24, 27

[KMM11a] Alexandra Kolla, Konstantin Makarychev, and Yury Makarychev. How to play

unique games against a semi-random adversary: Study of semi-random models of

unique games. 2011 IEEE 52nd Annual Symposium on Foundations of Computer

Science, Oct 2011. 53

[KMM11b] Alexandra Kolla, Konstantin Makarychev, and Yury Makarychev. How to play

unique games against a semi-random adversary: study of semi-random models of

unique games. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer

Science—FOCS 2011, pages 443–452. IEEE Computer Soc., Los Alamitos, CA,

2011. 54

[KMS98] David Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph coloring

by semidefinite programming. J. ACM, 45(2):246–265, 1998. 17

77

BIBLIOGRAPHY

[KNS01] Michael Krivelevich, Ram Nathaniel, and Benny Sudakov. Approximating coloring

and maximum independent sets in 3-uniform hypergraphs. J. Algorithms, 41(1):99–

113, 2001. 53

[Kol11] Alexandra Kolla. Spectral algorithms for unique games. Comput. Complexity,

20(2):177–206, 2011. 24, 27

[KS17a] Ken-ichi Kawarabayashi and Anastasios Sidiropoulos. Polylogarithmic approxima-

tion for minimum planarization (almost). In 58th Annual IEEE Symposium on

Foundations of Computer Science—FOCS 2017, pages 779–788. IEEE Computer

Soc., Los Alamitos, CA, 2017. 63

[KS17b] Pravesh K. Kothari and David Steurer. Outlier-robust moment-estimation via sum-

of-squares, 2017. 17

[KT07] Alexandra Kolla and Madhur Tulsiani. Playing random and expanding unique

games, 2007. 24, 27

[Kuc95] Ludek Kucera. Expected complexity of graph partitioning problems. Discret. Appl.

Math., 57(2-3):193–212, 1995. 3, 47

[Las01] Jean B. Lasserre. Global optimization with polynomials and the problem of mo-

ments. SIAM J. Optim., 11(3):796–817, 2000/01. 17

[Lev18] Yevgeny Levanzov. On finding large cliques in random and semi-random graphs.

Master’s thesis, Weizmann Institute of Science, 1 2018. 22

[LG79] P. C. Liu and R. C. Geldmacher. On the deletion of nonplanar edges of a graph.

In Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph

Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), Congress.

Numer., XXIII–XXIV, pages 727–738. Utilitas Math., Winnipeg, Man., 1979. 64

[LOT12] James R. Lee, Shayan OveisGharan, and Luca Trevisan. Multi-way spectral par-

titioning and higher-order Cheeger inequalities. In STOC’12—Proceedings of the

2012 ACM Symposium on Theory of Computing, pages 1117–1130. ACM, New

York, 2012. 38

[LRTV11] Anand Louis, Prasad Raghavendra, Prasad Tetali, and Santosh Vempala. Algo-

rithmic extensions of Cheeger’s inequality to higher eigenvalues and partitions. In

78

BIBLIOGRAPHY

Approximation, randomization, and combinatorial optimization, volume 6845 of

Lecture Notes in Comput. Sci., pages 315–326. Springer, Heidelberg, 2011. 43

[LRTV12] Anand Louis, Prasad Raghavendra, Prasad Tetali, and Santosh Vempala. Many

sparse cuts via higher eigenvalues. In STOC’12—Proceedings of the 2012 ACM

Symposium on Theory of Computing, pages 1131–1140. ACM, New York, 2012. 38

[LV18] Anand Louis and Rakesh Venkat. Semi-random graphs with planted sparse vertex

cuts: algorithms for exact and approximate recovery. In 45th International Collo-

quium on Automata, Languages, and Programming, volume 107 of LIPIcs. Leibniz

Int. Proc. Inform., pages Art. No. 101, 15. Schloss Dagstuhl. Leibniz-Zent. Inform.,

Wadern, 2018. 6, 17, 26

[LV19] Anand Louis and Rakesh Venkat. Planted models for k-way edge and vertex expan-

sion. In 39th IARCS Annual Conference on Foundations of Software Technology

and Theoretical Computer Science, volume 150 of LIPIcs. Leibniz Int. Proc. In-

form., pages Art. No. 23, 15. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern,

2019. 6

[LY93] Carsten Lund and Mihalis Yannakakis. The approximation of maximum sub-

graph problems. In Andrzej Lingas, Rolf Karlsson, and Svante Carlsson, editors,

Automata, Languages and Programming, pages 40–51, Berlin, Heidelberg, 1993.

Springer Berlin Heidelberg. 63

[Man17] Pasin Manurangsi. Inapproximability of maximum edge biclique, maximum bal-

anced biclique and minimum k-cut from the small set expansion hypothesis. In 44th

International Colloquium on Automata, Languages, and Programming, volume 80

of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 79, 14. Schloss Dagstuhl.

Leibniz-Zent. Inform., Wadern, 2017. 21

[McS01] Frank McSherry. Spectral partitioning of random graphs. In 42nd IEEE Symposium

on Foundations of Computer Science (Las Vegas, NV, 2001), pages 529–537. IEEE

Computer Soc., Los Alamitos, CA, 2001. 23

[MM20] Konstantin Makarychev and Yury Makarychev. Certified algorithms: Worst-case

analysis and beyond. In Thomas Vidick, editor, 11th Innovations in Theoretical

Computer Science Conference, ITCS 2020, January 12-14, 2020, Seattle, Wash-

ington, USA, volume 151 of LIPIcs, pages 49:1–49:14. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2020. 2

79

BIBLIOGRAPHY

[MMT20] Theo McKenzie, Hermish Mehta, and Luca Trevisan. A new algorithm for the

robust semi-random independent set problem. In Shuchi Chawla, editor, Proceed-

ings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt

Lake City, UT, USA, January 5-8, 2020, pages 738–746. SIAM, 2020. 5, 6, 8, 19,

53, 54, 55, 56, 59, 69

[MMV12] Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Ap-

proximation algorithms for semi-random partitioning problems. In STOC’12—

Proceedings of the 2012 ACM Symposium on Theory of Computing, pages 367–384.

ACM, New York, 2012. 6, 54

[MMV14a] Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Bilu-

Linial stable instances of max cut and minimum multiway cut. In Proceedings of

the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pages

890–906. ACM, New York, 2014. 2

[MMV14b] Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Con-

stant factor approximation for balanced cut in the PIE model. In STOC’14—

Proceedings of the 2014 ACM Symposium on Theory of Computing, pages 41–49.

ACM, New York, 2014. 6

[MNS12] Elchanan Mossel, Joe Neeman, and Allan Sly. Stochastic block models and recon-

struction, 2012. 6

[MU17] Michael Mitzenmacher and Eli Upfal. Probability and computing. Cambridge Uni-

versity Press, Cambridge, second edition, 2017. Randomization and probabilistic

techniques in algorithms and data analysis. 11

[Nes00] Yurii Nesterov. Squared functional systems and optimization problems. In High

performance optimization, volume 33 of Appl. Optim., pages 405–440. Kluwer Acad.

Publ., Dordrecht, 2000. 17

[NJW01] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis

and an algorithm. In Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahra-

mani, editors, Advances in Neural Information Processing Systems 14 [Neural In-

formation Processing Systems: Natural and Synthetic, NIPS 2001, December 3-8,

2001, Vancouver, British Columbia, Canada], pages 849–856. MIT Press, 2001. 38

80

BIBLIOGRAPHY

[Par03] Pablo A Parrilo. Semidefinite programming relaxations for semialgebraic problems.

Mathematical programming, 96(2):293–320, 2003. 17

[Pee03] René Peeters. The maximum edge biclique problem is NP-complete. Discrete Appl.

Math., 131(3):651–654, 2003. 22

[Rot13] Thomas Rothvoß. The lasserre hierarchy in approximation algorithms – Lecture

Notes for the MAPSP Tutorial, 2013. https://sites.math.washington.edu/

~rothvoss/lecturenotes/lasserresurvey.pdf. 9, 17, 55

[Rou21] Tim Roughgarden. Beyond the Worst-Case Analysis of Algorithms. Cambridge

University Press, 2021. 2, 5, 69

[RS95] Neil Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem.

J. Combin. Theory Ser. B, 63(1):65–110, 1995. 63

[Sho87] NZ Shor. An approach to obtaining global extremums in polynomial mathematical

programming problems. kibernetika 5 102–106.. 1998. Nondifferentiable Optimiza-

tion and Polynomial Problems, 1987. 17

[SN97] Tom A. B. Snijders and Krzysztof Nowicki. Estimation and prediction for stochastic

blockmodels for graphs with latent block structure. J. Classification, 14(1):75–100,

1997. 6

[ST01] Daniel Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: why the

simplex algorithm usually takes polynomial time. In Proceedings of the Thirty-

Third Annual ACM Symposium on Theory of Computing, pages 296–305. ACM,

New York, 2001. 2

[Tre17] Luca Trevisan. Beyond worst-case analysis: Lecture 7, 10

2017. URL: https://lucatrevisan.wordpress.com/2017/10/13/

beyond-worst-case-analysis-lecture-7/. 64, 65

[Tro12] Joel A. Tropp. User-friendly tail bounds for sums of random matrices. Found.

Comput. Math., 12(4):389–434, 2012. 43

[TSS02] A. Tanay, R. Sharan, and R. Shamir. Discovering statistically significant biclusters

in gene expression data. Bioinformatics, 18 Suppl 1:S136–44, 2002. 22

81

https://sites.math.washington.edu/~rothvoss/lecturenotes/lasserresurvey.pdf
https://sites.math.washington.edu/~rothvoss/lecturenotes/lasserresurvey.pdf
https://lucatrevisan.wordpress.com/2017/10/13/beyond-worst-case-analysis-lecture-7/
https://lucatrevisan.wordpress.com/2017/10/13/beyond-worst-case-analysis-lecture-7/

BIBLIOGRAPHY

[Ver18] Roman Vershynin. High-dimensional probability, volume 47 of Cambridge Series in

Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge,

2018. An introduction with applications in data science, With a foreword by Sara

van de Geer. 9, 11, 24, 30

[Vu07] Van H. Vu. Spectral norm of random matrices. Combinatorica, 27(6):721–736,

2007. 12

[Wig58] Eugene P. Wigner. On the distribution of the roots of certain symmetric matrices.

Ann. of Math. (2), 67:325–327, 1958. 12

[WS11] David P. Williamson and David B. Shmoys. The design of approximation algo-

rithms. Cambridge University Press, Cambridge, 2011. 9

[Yan78] Mihalis Yannakakis. Node-and edge-deletion np-complete problems. In Proceedings

of the Tenth Annual ACM Symposium on Theory of Computing, STOC ’78, page

253–264, New York, NY, USA, 1978. Association for Computing Machinery. 8, 18,

63

[Zha08] Yun Zhang. Elissa j. chesler, michael a. langston: On finding bicliques in bipartite

graphs: a novel algorithm with application to the integration of diverse biological

data types. In 41st Hawaii International International Conference on Systems

Science (HICSS-41 2008), Proceedings, 7-10 January 2008, Waikoloa, Big Island,

HI, USA, page 473. IEEE Computer Society, 2008. 18

[Zuc07] David Zuckerman. Linear degree extractors and the inapproximability of max clique

and chromatic number. Theory of Computing, 3(6):103–128, 2007. 52

82

	Acknowledgements
	Abstract
	Publications based on this Thesis
	Contents
	List of Figures
	1 Introduction
	1.1 Beyond Worst-Case Analysis
	1.2 Graph problems in semi-random models
	1.3 Our Contributions
	1.4 Organisation

	2 Preliminaries
	2.1 Notation
	2.2 Linear Algebra and Probability
	2.2.1 Linear Algebraic Facts
	2.2.2 Probabilistic Inequalities

	2.3 Perturbation Theory
	2.4 Semidefinite Programming (SDP)
	2.4.1 Different facets of SDPs
	2.4.2 SDP Duality
	2.4.3 Lasserre/Sum-of-squares(SOS) hierarchy

	2.5 SDP/Lasserre hierarchies in approximation algorithms

	3 Odd Cycle Transversal Problem
	3.1 Exact Recovery using Subspace Enumeration
	3.1.1 Partial recovery of the planted set
	3.1.2 Algorithm for full recovery

	3.2 Exact recovery in polynomial time using SDP
	3.2.1 High degree regimes
	3.2.1.1 Constructing an optimal dual
	3.2.1.2 Pseudo-random values of dual variables

	3.2.2 Low degree regimes
	3.2.3 Action of Adversary

	3.3 Miscellaneous proofs
	3.3.1 Computing the dual of sdp:primal
	3.3.2 Proof of prop:farkasvariant
	3.3.3 Proof of claim:matrixexpt

	4 Maximum Independent set in hypergraphs
	4.1 SDP Bounding
	4.2 Algorithm for computing a large independent set

	5 Largest Induced Planar Subgraph
	5.1 Partial recovery of planted planar graph
	5.2 Full recovery of planted planar graph

	6 Conclusion
	Bibliography

