
Sum of Squares and Lasserre hierarchy

Arka Ray Rameesh Paul

May 12, 2022

Abstract

In this survey we aim to study hierarchies, which are general procedures to write strengthened convex
relaxations (LP/SDP) for optimization problems by introducing additional variables and generating
corresponding constraints in a mechanical fashion. We discuss the the Sherali-Adams hierarchy [SA90]
and the Lasserre hierarchy [Las01] and exhibit how they shrink the polytope of the feasible region. We
then show the equivalence of the primal (Lasserre moment based approach) and the dual (sum of squares
of polynomials approach). We will then discuss the MAX-CUT SDP formulation as an application of
Lasserre hierarchies. Our presentation of these topics is primarily based on survey by Thomas Rothvoß
[Rot13] and survey by Eden Chlamtac and Madhur Tulsiani [CT12]. The view point of hierarchies being
generated from lift and project framework is based on [Lau03]. The presentation of sum of squares is
based on the monograph by Kothari et al. [FKP19]

1

1 Introduction

A generic technique in solving combinatorial optimization problem is to formulate them as integer programs
and consider convex relaxations of such integer programs; most common of these convex relaxations being
linear programming (LP) and semi definite programming (SDP) relaxations. If the relaxation is exact the
optimal solution to the relaxation turns out to be integral, but typically this is not the case and the LP/SDP
relaxation has an integrality gap. A natural idea is to then examine such gap instances and consider additional
constraints which are violated. A bulk of research in approximation algorithms attempts to find better
relaxations with smaller integrality gaps. As an example, the canonical SDP relaxation obtained by adding
triangle inequality constraints gives improved integrality gaps and approximation algorithms for sparsest cut
problem [ARV04] and MAX-2-SAT [LLZ02] respectively.

However generally the process of adding such constraints is problem specific and heuristic, which begs the
question whether there can be a systematic way to add such constraints. This is the question that hierarchies
of convex programs addresses and various such LP/SDP hierarchies that have been proposed in the literature
namely, the Lovász-Schrijver hierarchy [LS91], the Sherali-Adams hierarchy [SA90] and the most powerful of
them, the Lasserre hierarchy [Las01]. In this survey we focus mostly on the Lasserre hierarchy or equivalently
the sum of squares, however we give a brief overview of other hierarchies.

2 Hierarchies of convex programs

A hierarchy is a sequence of strengthened relaxation of some basic convex program. A level-t relaxation
is produced in a mechanical fashion by adding nO(t) decision variables xI ,∀I ⊆ [n], |I| 6 t and some local
consistency constraints over these decision variables. Hence, a level-t hierarchy can be solved in nO(t)

and we are guaranteed that any possible local constraints upto level t hold true. This also implies that a
level-n hierarchy corresponds to the integral program, however the number of variables introduced is already
exponential. These hierarchies use the method of lift and project to generate polyhedral and spectrahedral
lifts to obtain LP and SDP respectively and then project them back onto initial set of decision variables to
obtain a polytope which is tighter. For this survey we consider a LP in inequality form and a SDP in matrix
form as

Minimize: 〈c,x〉
Subject to: Ax 6 b (1)

x > 0

Minimize: 〈C,X〉
Subject to: X � 0, (2)

〈Ai, X〉 6 bi, ∀i = 1, . . . ,m.

Since the LP’s we will be interested in are relaxations of integer programs we can add xi ∈ [0, 1] to (1).
We denote the polytope of the feasible set by P and polytope at level-t of some hierarchy as Pt. As note that
for any hierarchy of the LP in (1),

Pn(= I) = conv({x ∈ {0, 1}n, Ax 6 b})

The above is a restatement of the fact that for a level-n hierarchy the problem is equivalent to the ILP version.
We can write it in the above form using the fact that the optimum of LP occurs at a vertex 1 and hence we
can even relax to consider the convex hull of integral solutions (integral hull, denoted by I). Next we describe
a general framework using lift and project methods for mechanically generating constraints corresponding to
these additional variables.

2.1 Lift and project framework

The general lift and project framework can be described as a three step process,

1Bauer maximum principle states it more generally for convex functions over compact convex sets

1

1. Extending - Introduce variables for products of xi and multiply Ax 6 b by these new variables to
obtain new constraints which are polynomials in x.

2. Lifting - Introduce decision variables yI for
∏
i∈I xi and using x2

i = xi we convert the polynomial in x
to a lifted linear system in y.

3. Project - We project back on the the original space of decision variables x ∈ Rn.

We add constraints for variables of size atmost t to obtain a level-t hierarchy.

2.2 Sherali-Adams hierarchy

We now introduce the Sherali-Adams hierarchy as a tightening to the LP given in (1) by applying the lift and
project framework discussed above. The level-t lifting is done by introducing new variables for degree-t terms
which are called non-negative juntas.

Definition 2.1. A non-negative junta of degree-t (denoted by JS,T (x)) is a multilinear polynomial defined as

JS,T (x) =
∏
i∈S

xi
∏
j∈T

(1− xj) for S ∩ T = φ and |S ∪ T | 6 t.

We multiply the constraint set Ax 6 b by these non-negative junta polynomials to impose new constraints
as, ∏

i∈S
xi
∏
j∈T

(1− xj)(bl − aTl x) > 0,∀l ∈ [m]

The non-negativity of junta polynomials is also added as a constraint. We then apply the lifting procedure by
multilinearizing the objective and constraints in yI variables to obtain a lifted y ∈ SAt(P). We then solve
the lifted LP given by,

LP 2.2.
min cTy

subject to ∑
T ′⊆T

(−1)|T
′|yS∪T ′ > 0 ∀S ∩ T = φ, |S ∪ T | 6 t (3)

∑
T ′⊆T

(−1)|T
′|
(
blyS∪T ′ −

n∑
i=1

aliyS∪T∪{i}

)
> 0 ∀S ∩ T = φ, |S ∪ T | 6 t− 1,∀l ∈ [m] (4)

yφ = 1 (5)

The LP above is exact for n variables i.e includes any possible constraint that can be added for integral
solutions. However if we restrict to polynomial time procedures we can only consider SAt(P) for a constant t so
that we have a polynomial number of variables nO(t) and constraints m.nO(t). We will then project the solution
y onto our original decision variables y1, . . . , yn via some rounding to obtain an approximate solution. We
observe that the constraints at level t are retained at level t+ 1, thus we have that SAt+1

proj (P) ⊆ SAtproj(P) ⊆ P .

2.2.1 Utility of SAierarchy

We consider the maximum independent set example on cycle graphs with the obvious LP relaxation as,

2

LP 2.3.
max

∑
i∈V

xi

subject to

xi + xj 6 1 ∀(i, j) ∈ E (6)

0 6 xi 6 1 ∀i ∈ V (7)

If the length of the cycle is odd then the optimal solution to problem is a set of size (|V | − 1)/2 but we
can construct a feasible solution to the LP with value |V | /2 (by setting all xi = 0.5). If we consider the LP
obtained by SA2(P) we can solve such instances of the problem exactly (Appendix B).

Next we wish to better characterize the points inside SAt(P) and using the distribution viewpoint
can express them as locally consistent expectation functions (called pseduo-expectations) in a one to one
correspondence.

2.2.2 Locally consistent probability distribution

Let z ∈ SAt(P) be a point in the feasible polytope of level-t SA hierarchy then z defines a map on monomials,

Ẽ

[∏
i∈S

xi

]
:= zS ,∀S ⊆ [n], |S| 6 t.

which can be extended to polynomials in a natural way. The probabilistic view point is that these monomials∏
i∈S xi can be thought of as event denoted by 1S . We can then also interpret the junta polynomials

JS,T (x) =
∏
i∈S xi

∏
j∈T (1− xj) as the event 1S,T which means xi = 1,∀i ∈ S and xj = 0,∀j ∈ T . We can

define a distribution over integral solutions for the points in I by observing that any feasible solution z can
be written as a convex combination,

z =
∑

pi∈{0,1}n
αipi defines a probability distribution µz(pi) : {0, 1}n → R+ := zi.

However if a point z ∈ SAt(P) and z /∈ I no such convex combination and hence no such probability distribution
exists. However if we consider zS to be the probability of event 1S in some underlying distribution and
restrict to variables from some set S where |S| 6 t the marginal distribution we obtain (denoted by µzS)
follows as,

zS = P [1S] =
∑

pi∈{0,1}n:pi=1,∀i∈S

P [pi] = µzS [1S]

Similarly we can show that for T ⊆ S we can write distribution over events 1T,K where T ∪K = S as,

µzS [1T,K] =

 ∑
K′⊆K

(−1)|K
′|zT∪K′

The constraints in SA relaxation make the marginal distribution consistent.2 The distribution is called
pseudo-distribution and it can be shown that if we consider integral solutions (over S) or equivalently restrict
ourselves to solutions in which only t variables become integral, then these behave like true distributions.
Taking expectations over these distributions give rise to pseudo expectations for P i.e

Ẽ [JS,T (x)] = µS∪T (1S,T)

We discuss these things more formally and in much more detail in Section 3.2.

2The constraints in SA relaxation ensure that probabilities are non-negative and sum to 1 and act like a true distribution for
subsets upto size t.

3

2.3 Lasserre hierarchy

The Lasserre hierarchy which is attributed to Shor[Sho87], Parillo[Par03] and Lasserre [Las01] is an extension
of the ideas in SA hierarchy in some SDP fashion. As before if we choose x ∈ I, we can write it as a
convex combination of integral solutions and interpret xi as the probability that xi = 1 in an integral
solution. However in general we are only guaranteed a fractional solution x ∈ P which we can still interpret
x′is as the marginal probabilities but they don’t give much information about the joint events, e.g., all we
can guarantee is P [xi = 1 ∧ xj = 1] ∈ [max {x1 + xj − 1, 0},min {xi, xj}]. Hence we introduce additional
variables yI = P [∧i∈I(xi = 1)] so that the fractional solution can be written as convex combination of integral
solutions (locally for a level-t Lasserre) and we get the correct values for joint probabilities. Note that yφ = 1
as before (for homogenization) and the original variables are captured as y{i} = xi. However we need to
do introduce such yI for all I ⊆ [n] and hence the vector y is a 2n dimensional vector. To make the whole
procedure tractable we introduce such variables only for sets of size t and hence we get

(
n
t

)
= nO(t) variables.

The lifting procedure add constraints on such variables in an SDP fashion (by arranging in a matrix where
(i, j) entry is

∏
i∈I,j∈J xixj) and then we linearize them and add the psd-ness constraint (instead of the

non-negativity constraint in SA). This construction is referred to as a level-t Lasserre hierarchy denoted by
LASt(P).

2.3.1 Lasserre Construction

As described above the variables are introduced for sets upto size t, to make the probability of joint events
consistent (locally). Hence the additional constraints that impose this are called as consistency constraints
and these are enforced by the moment matrix M t(y) := [yI∪J]ij ∀I, J ⊆ [n], |I| , |J | 6 t and 0 otherwise. To
enforce the other constraints we define a slack matrix M t

l (y) :=
∑n
i=1 blyI∪J −AliyI∪J∪{i},∀l ∈ [m].

We say that a vector y ∈ LASt(P) is a solution to the SDP relaxation given by ,

SDP 2.4.

min cTy

subject to

M t(y) � 0 (8)

M t
l (y) � 0 ∀l ∈ [m] (9)

yφ = 1 (10)

where c is defined to be a vector in R2n

(so that we have a valid inner product) but it is non-zero only in the
first n+ 1 entries corresponding to y{i}. We note that although y ∈ R2n

we know that yI = 0,∀ |I| > 2t+ 1.

After we obtain a y ∈ LASt(P) we project back onto original decision variables xi = yi as,

LAStproj(P) =
{(
y{1}, y{2}, . . . , y{n}

)
: y ∈ LASt(P)

}
We note that in our discussion we start with an LP and then we described the SA/Lasserre relaxation;

however it can be done more generally for polynomial optimization problems (we refer to [FKP19] for more
details).

2.3.2 Properties of Lasserre

We now prove a few basic yet important properties of the solution y ∈ LASt(P) returned by SDP 2.4 First
we show that the additional constraints (8)-(10) hold true for integral solutions and that SDP 2.4 is a valid
relaxation.

Claim 2.5. I ⊆ LAStproj

4

Proof. We show that given any feasible solution x ∈ I for the original LP we can construct a feasible solution
y to the SDP 2.4. We let y such that yI =

∏
i∈I xi and consider Mn(y) then,

[Mn(y)]ij = yI∪J =
∏
i∈I∪J

xi =
∏

i∈I∆J
xi
∏
i∈I∩J

xi =
∏

i∈I∆J
xi

(∏
i∈I∩J

xi

)2

=
∏
i∈I

xi
∏
j∈J

xj = yIyJ

where we have used the fact that xi = x2
i since x ∈ I and hence xi ∈ {0, 1}. This shows that Mn(y) takes

the form yyT and hence Mn(y) � 0. Now since M t(y) is a principal submatrix of Mn(y), we have that
M t(y) � 0 and constraint (8) holds.

We similarly show that Mn
l (y) � 0 as,

[Mn
l (y)]ij =

n∑
i=1

blyI∪J −Ali.yI∪J∪{i} =

n∑
i=1

blyIyJ −Ali.yIyJy{i} = yIyJ(bl −Alx)

where again we use xi = x2
i and using the fact that bl − Alx > 0 we show that Mn

l (y) � 0 and hence
M t
l (y) � 0.

Next we show that SDP 2.4 is truly a relaxation of the original LP as,

Claim 2.6. LAStproj(P) ⊆ P

Proof. Let y ∈ LASt(P), then using the constraint (9) with I = J = φ we get,

n∑
i=1

blyφ −Aliyφ∪{i} > 0

Now since yφ = 1 we have that
∑n
i=1 bl −Aliyi > 0 and hence LAStproj(P) = (y1, . . . , yn) ∈ P.

Claim 2.7. a) 0 6 yI 6 1,∀I ⊆ [n], |I| 6 t b) yI 6 yJ ,∀I ⊆ J ⊆ [n], |I| , |J | 6 t

Proof. a) Consider the submatrix indexed by {I, J},
[
yφ yI
yI yI

]
. Now since the submatrix is a principal

submatrix of M t(y) it must be PSD and have |.| > 0. Hence

∣∣∣∣yφ yI
yI yI

∣∣∣∣ > 0.

b) Consider the submatrix indexed by {I, J},
[
yI yJ
yJ yJ

]
where we have used the fact that I ∪ J = J since

I ⊆ J . Now since the submatrix is a principal submatrix of M t(y) it must be PSD and have |.| > 0.

Hence

∣∣∣∣yI yJ
yJ yJ

∣∣∣∣ > 0. Hence yIyJ − yJyJ = yJ (yI − yJ) > 0. Since we already know form (a) that yJ > 0

we have that yI > yJ .

We can rewrite the claim above for a degree-1 SOS as y{i} > 0 and 1− y{i} > 0 which were our constraints
due to junta polynomials in level-1 SA hierarchy. One can show that this is true in general and a level-t
Lasserre relaxation is atleast as expressive as level-t SA relaxation.

2.3.3 Evolution of Lasserre hierarchy

We know that for any x ∈ I, we can write x as a convex combination of integral solutions. This is not true
for a level-t Lasserre relaxation. However we can still show (Corollary 2.10) that for a level-t Lasserre we can
write y ∈ LASt(P) as a convex combination of solutions of P in which t variables become integral. To this
effect we first define a one step integral vector z from y as,

5

Definition 2.8. We define z(0) to be a vector y where the ith variable is 0 i.e z
(0)
i = 0 and z(1) to be a

vector y where the ith variable is 1 i.e z
(1)
i = 1. We can then write this from a vector y as,

z
(0)
I = yI

(1− yi)
(1− yi)

=
yI − yI∪{i}

1− yi
z

(1)
I = yI

(yi)

(yi)
=
yI∪{i}

yi

Lemma 2.9. For y ∈ LASt(P) we can write as, y = yiz
(1) + (1− y1)z(0) where z(0), z(1) ∈ LASt−1(P).

Proof. Using the definition of z in Definition 2.8 it is straightforward to see that y = yiz
(1) +(1−y1)z(0). The

non-trivial part is showing that z(0), z(1) ∈ LASt−1(P). We start from the fact that if y ∈ LASt(P) we have
that M t(y) � 0 and by Cholesky factorization there exists vectors {vI}I⊆[n],|I|6t such that yI∪J = 〈vI , vJ〉.

We need to show that M t−1(z(1)) � 0 and if we let v
(1)
I =

vI∪{i}√
yi

,∀I ⊆ [n], |I| 6 t− 1, we have that,

z
(1)
I∪J =

yI∪J∪{i}

yi
=

〈
vI∪{i}, vJ∪{j}

〉
yi

=
〈
v

(1)
I , v

(0)
J

〉
. Similarly we can set v

(0)
I =

vI − vI∪{i}√
1− yi

,∀I ⊆ [n], |I| 6 t− 1 and we can show that M t−1(z(0)) � 0.

Corollary 2.10. For any y ∈ LASt(P) and S ⊆ [n], |S| 6 t we can write,

y ∈ conv
{

z ∈ LASt−|S|(P) : zi ∈ {0, 1} ∀i ∈ S
}

Proof. Apply Lemma 2.9 inductively t− |S| times.

This again confirms the fact that after n rounds of hierarchy we get the exact ingeral solution, LASnproj = I.

2.3.4 Utility of Lasserre hierarchy

We consider the problem of finding an independent set and can write the LASt SDP relaxation as,

SDP 2.11.

max ‖yi‖2

subject to

‖ye‖2 = 0 ∀e ∈ E (11)

〈yI ,yJ〉 = 〈y′I,y′J〉 ∀I, J, I ′, J ′ ⊆ [n], |I| , |I ′| , |J | , |J ′| 6 t, I ∪ J = I ′ ∪ J ′ (12)

The SDP 2.11 was analyzed for t = 3 by Eden Chlamtac in the work [Chl07] where they round this to
give Ω

(
n1/2−γ) sized independent set for 3-uniform hypergraphs. This is an improvement over the basic

SDP based algorithm by Krivelevich, Nathaniel and Sudakov [KNS01] that finds an independent set of size
Ω̃
(
min

(
n, n6γ−3

))
for γ > 1/2 in 3-uniform hypergraphs.

Infact the work by Prasad Rraghavendra [Rag08] shows that a level-2 Lasserre hierarchy gives the optimal
SDP (also commonly called the canonical SDP) for all CSP’s under Unique Games conjecture.

3 Sum of Squares on a Hypercube

This section and the following sections are based on [BS16].

6

3.1 Sum of Squares Proofs

In this section we shift our attention to a seemingly unrelated question of showing a function is non-negative.
The sum of squares paradigm attempt to achieve this feat by (as its name implies) writing the function as
sum of square of polynomials. For simplicity we shall restrict ourselves to R{0,1}n = B which are sometimes
called Boolean functions.

Before we start we note a few things about Boolean functions. Firstly, in this domain xki = xi for any
k > 1. Secondly, any f ∈ B can be uniquely represented as3 f =

∑
S⊂[n] cSxS where xS =

∏
i∈S xi. These

two facts will be extensively used to obtain the “right form” for the function in any given context.

Definition 3.1. A degree-d sum of squares (sos) proof for f > 0 is a collection of d/2 degree polynomial
p1, p2, ..., pr for some r such that f =

∑
i∈[r] p

2
i . We write `d f > 0 if such a proof exists.

We start by showing an interesting (though not quite useful) fact about sos proofs,

Lemma 3.2. If f > 0 then `2n f > 0.

Proof. Define g ∈ B by

g(x) =
∑

y∈{0,1}n

√
f(y)

∏
i|yi=1

xi
∏

j|yj=0

(1− xj)

Then g is degree d/2 polynomial such that g =
√
f , i.e, f = g2 as 1y(x) =

∏
i|yi=1 xi

∏
j|yj=0(1− xj).

Though this shows sos proofs are possible for any non-negative function this does not make the task of
constructing sos proofs easy as the above method evaluates the function at all points which could be done
anyway. In fact we would like a constant degree proof with a small number of polynomials. This will allow us
to describe the proof with a few numbers and possible get a fast algorithm.

For remainder of the section let vd(x) denote an
(
n
6d

)
dimensional vector with vd(x)S =

∏
i∈S xi. With

this we can represent any degree d polynomial as a 〈v, vd〉 for some vector v.

Lemma 3.3. `d f > 0 if and only if there exists a psd matrix A such that 〈vd/2(x), Avd/2(x)〉.

Proof. Suppose `d f > 0 then there are d/2 degree polynomials {pl}l∈[r] such that f =
∑
l∈[r] p

2
l . Let

vl ∈ R(n

6 d
2
)

be vectors such that pl(x) = 〈vl, vd/2(x)〉. Taking A =
∑
l∈[r] vlv

T
l we have,

f(x) =
∑
l∈[r]

p2
l (x) =

∑
l∈[r]

〈vl, vd/2(x)〉2 =
∑
l∈[r]

vd/2(x)T vlv
T
l vd/2(x) = vd/2(x)TAvd/2(x)

as required.
Now, if A is psd matrix such that f(x) = 〈vd/2(x), Avd/2(x)〉 then taking gS(x) = 〈eS , A1/2vd/2(x)〉 gives

us,

f(x) = 〈vd/2(x), Avd/2(x)〉 = 〈A1/2vd/2(x), A1/2vd/2(x)〉

=
∑
S⊂[n]
|S|6d/2

〈A1/2vd/2(x), eS〉〈eS , A1/2vd/2(x)〉

=
∑
S⊂[n]
|S|6d/2

g2
l (x)

The most important consequence of the above lemma is, if f > 0 is a polynomial of degree d (or can be
simplified to such using xki = xi) then we can get a sos proof of degree d by solving the following SDP:

3This is commonly known as Fourier expansion

7

SDP 3.4. ∑
S1∪S2=S

AS1S2 = cS ∀S ⊆ [n], |S| 6 d/2

A � 0

We also get another consequence by noticing that if we have `d f > 0 then we can get a psd matrix as
above from which we can write f as sum of squares of

(
n

6d/2

)
polynomial. In essence we have the following

corollary,

Corollary 3.5. If `d f > 0 then there are
(

n
6d/2

)
d/2 degree polynomials {pS} S⊂[n]

|S|6d/2
such that f =

∑
S⊂[n]
|S|6d/2

p2
S.

Proof. Since `d f > 0, therefore there is psd matrix such that,

f(x) = 〈vd/2, Avd/2〉 =
∑
S⊂[n]
|S|6d/2

〈A 1
2 vd/2, eS〉〈eS , A

1
2 vd/2〉 =

∑
S⊂[n]
|S|6d/2

〈eS , A
1
2 vd/2〉2

Thus, taking pS = 〈eS , A
1
2 vd/2〉 we get f =

∑
S⊂[n]
|S|6d/2

p2
S .

In this unconstrained setting we can in fact (try to) find the maximum (minimum) value for a function f
by minimizing (maximizing) c such that `d c− f > 0 (`d f − c > 0). In essence we will be solving,

SDP 3.6.

min c

subject to ∑
S1∪S2=S

AS1S2
= −cS ∀S ∈ 2[n] − φ, |S| 6 d/2

Aφφ = c− cφ
A � 0

Now as a prelude to the next part of this section we observe that functions with degree d proof form a
convex cone (set).

Lemma 3.7. Kd = {f | `d f > 0} is a convex cone.

Proof. For any f1, f2 ∈ Kd and α, β > 0, we can write f1 =
∑
i p

2
i and f2 =

∑
i q

2
i . Therefore,

αf1 + βf2 =
∑
i

αp2
i +

∑
i

βq2
i =

∑
i

(
√
αpi)

2 +
∑
i

(
√
βqi)

2

Finally we end this discussion on sos proofs with the following result,

Lemma 3.8. If f ∈ B has a degree d polynomial representation then, ∃Md such that `2d Md − f > 0

Proof. f can be written as f =
∑
S⊂[n]
|S|6d

cSxS (see Appendix A). Taking Md =
∑
S⊂[n]
|S|6d

cSmS where,

mS =

{
1 cS > 0

0 cS 6 0

8

So,

Md − f =
∑
S⊂[n]
|S|6d

cSmS − cSxS =
∑

S|cS<0

−cSxS +
∑

S|cS>0

cS(1− xS)

=
∑

S|cS<0

(
√
−cSxS)2 +

∑
S|cS>0

cS(1− 2xS + xS)

=
∑

S|cS<0

(
√
−cSxS)2 +

∑
S|cS>0

(
√
cS(1− xS))2

3.2 Pseudo-Distribution and Pseudo-Expectation

In the previous part of to this section we noted that the set of functions having a degree d sos proofs form a
convex cone (set). This leads us to an interesting observation (using hyperplane separation theorem) when
6`d f > 0, which is, ∃µ ∈ B such that 〈µ, f〉 =

∑
x µ(x)f(x) < 0 while 〈µ, p〉 > 0 for every p ∈ Kd. Roughly

speaking the function is called a pseudodistribution as it behaves like an probability distribution w.r.t a
quantity called pseudoexpectation.

Let us now form these notions of pseudodistribution and pseudoexpectation more carefully. Firstly, we
call the following formal expectation w.r.t µ ∈ B is,

Ẽ
µ
f = 〈µ, f〉

With this we can define pseudodistribution as,

Definition 3.9. µ ∈ B is called a degree d pseudodistribution if

1. Ẽµ 1 = 1

2. Ẽµ f2 > 0 for polynomial of degree at most d/2.

and Ẽµ is called a pseudoexpectation.

Note that if µ > 0 then it is a probability distribution and also by Lemma 3.2 degree 2n pseudodistribution
are probability distributions. As a further justification of the name we state the Cauchy-Schwartz inequality
for pseudodistribution,

Lemma 3.10 (Cauchy-Schwartz Inequality). If µ is a degree d pseudodistribution, then for any degree d/2
polynomials p, q, (

Ẽ
µ
pq

)2

6 Ẽ
µ
p2 Ẽ

µ
q2

and we also note,

Lemma 3.11. If µ is a degree 2n distribution then µ > 0, i.e, it is a probability distribution.

The main take away here is pseudoexpectations behave exactly like a true expectation when fed a low
degree polynomial.

Now we prove the theorem which was the initial motivation for the Definition 3.9,

Theorem 3.12 (duality of sos and pseudodistribution). For every function f of degree at most d, `d f > 0
if and only if Ẽµ f > 0 for all degree d pseudodistribution.

9

Proof. Suppose `d f > 0 then there are degree d/2 polynomials gi such that f =
∑
i g

2
i . Therefore,

Ẽ
µ
f = Ẽ

µ

∑
i

g2
i =

∑
i

Ẽ
µ
g2
i > 0

Now, suppose 6`d f > 0 then f 6∈ Kd (cone of d-sos provable functions) which means by Hyperplane Separation
Theorem, there is a µ ∈ B such that,

1. Kd ⊂
{
g| Ẽµ g = 〈µ, f〉 > 0

}
, i.e, Kd is contained in one side of the hyperplane.

2. Ẽµ f = 〈µ, f〉 < 0, i.e, f is in the other side of the hyperplane.

Since, f has degree d by Lemma 3.8 we must have some M such that `d M + f > 0. Therefore,

Ẽ
µ

1 =
1

M
Ẽ
µ
M =

1

M

[
Ẽ
µ

(M + f)− Ẽ
µ
f

]
> 0

Hence, by appropriate re-scaling of µ we can obtain a pseudodistribution.

We now turn to showing a result which in spirit mirrors Lemma 3.3,

Lemma 3.13. µ is a degree d pseudodistribution if and only if

1. Ẽµ 1 = 1

2. Ẽµ vd/2(x)vd/2(x)T � 0

Proof. Suppose µ is a degree d pseudo-distribution, Ẽµ 1 = 1 by definition. For any v ∈ R(n
6d/2) we have a

corresponding degree d/2 polynomial p(x) = 〈v, vd/2(x)〉. Again, by definition Ẽµ p2 > 0. But,

p2(x) = 〈v, vd/2(x)〉2 = vT vd/2(x)vd/2(x)T v

. So, vT Ẽµ vd/2(x)vd/2(x)T v > 0. Which means Ẽµ vd/2(x)vd/2(x)T � 0.

Similarly if Ẽµ vd/2(x)vd/2(x)T � 0 then for any v we get Ẽµ〈v, vd/2(x)〉2. As any degree d/2 polynomial

is equal to some multilinear degree d/2 polynomial we have for any degree d/2 polynomial p, Ẽµ p2 > 0.

Therefore along with the condition Ẽµ 1 = 1, µ is a degree d pseudo-distribution.

As we noted earlier only the first d moments of a pseudo-distribution are relevant(See Theorem 3.12).
Therefore we can again use the following SDP to characterize pseudo-distributions.

SDP 3.14.

Aφφ = 1

A � 0 A ∈ R(n
6d/2)×(n

6d/2)

where each entry AS1S2
gives the |S1 ∪ S2| moment Ẽµ xS1

xS2
= Ẽµ xS1∪S2

for some degree d pseudo-
distribution. Before looking at the optimization variant consider the following fact with Md as the set of
degree d pseudo-distribution and D the set of actual distributions.

Observation 3.15. Md ⊃Md+2 and M2n = D, i.e, M2 ⊃M4 ⊃ ... ⊃M2n = D

Proof. The containment is by definition and the equality is a restatement of Lemma 3.11.

Due to the above observation we see maxx f 6 maxµ∈D Eµ f 6 maxµ∈Md
Ẽµ f (similarly for minimization).

As we will see it will be worthwhile to consider the following optimization

10

SDP 3.16.

max
∑
S

AScS

subject to

Aφφ = 1

A � 0 A ∈ R(n
6d/2)×(n

6d/2)

Since AS1S2
= Ẽµ xS1∪S2

we can refer to AS1S2
by AS1∪S2

.
To find a pseudo-distribution with the given moments we consider the following statement,

Lemma 3.17. Let µ be a degree d pseudo distribution then there exists a multilinear polynomial µ′ of degree
at most d such that,

Ẽ
µ
p = Ẽ

µd

p

for every polynomial p of degree at most d.

Proof. Let Bd be the subspace of all possible degree d polynomial. We know Bd is spanned by the set of
multilinear polynomial (See Appendix A). Write µ as µ = µd + µ⊥ where µd ∈ Bd and µ⊥ ∈ B⊥d . So, if
p ∈ Bd then,

Ẽ
µ
p = 〈µ, p〉 = 〈µd + µ⊥, p〉 = 〈µd, p〉 = Ẽ

µd

p

Using this lemma we know that degree d polynomial µ with required moments. Say, µ =
∑
|S|6d cSxS

then we need to solve for the equations
∑
|S′|6d cS′ |S ∩ S′| = 〈µ, xS〉 = Ẽµ xS = AS .

We end this section by noting that the SDP 3.16 is also called the Lassere SDP 4. Furthermore, SOS in
its full generality can use additional non-negativity constraints.

4 Applications of SOS

In this section we will look at application of SOS in finding approximation algorithms for NP-complete
problems. In these algorithms instead finding the optimum solution we seek to find some solution which is
guaranteed to be close the optimum. More formally,

Definition 4.1. An α-approximation algorithm for an optimization is a polynomial-time algorithm that (for
all instances of the problem) produces a solution whose value is within a factor of α of the optimum value.
In essence, the obtained value for the solution to maximization (minimization) problem is a lower (upper)
bound for the maximum (minimum).

In most cases we can formulate such problems as optimization of a class of function on the 0-1 hypercube.
The general approach to solving a maximization problem in this framework to show that for any function f
in the given class we have a degree d sos proof for c− f > 0 where αc 6 maxx f , i.e, if solve SDP 3.6 we get
a lower bound αc for the maximum value.

Alternately, we can use the dual approach, i.e, we can show that for any degree d pseudo-distribution µ
we can (try to) find an actual distribution ρ such that,

E
ρ
f > α Ẽ

µ
f

then by finding a degree d pseudo-distribution µ which maximizes Ẽµ f (by solving SDP 3.16) we can find
an actual distribution whose expected value is bounded by αmaxx f . Therefore we can obtain a solution

4in our initial discussion about Lassere we had considered only linear objectives but linearity is not necessary

11

which is fairly close to the optimum by sampling the distribution. This approach is commonly referred to as
“rounding”.

For a concrete example we look at the MAX-CUT problem for we will show how to obtain the best known
approximation ratio (and best possible under a fairly plausible conjecture called Unique Games Conjecture).
For the following tool which is in itself quite powerful,

Lemma 4.2 (quadratic sampling lemma). For every degree-2 pseudo distribution µ over {0, 1}n, there is a
multivariate Gaussian ρ with the same first two moments, i.e,

Ẽ
µ
v2(x) = E

ρ
v2(x)

which can be sampled in polynomial time.

Proof. Let v = Ẽµ x and Σ = Eµ(x− v)(x− v)T be the mean vector and covariance matrix for µ. By taking
any u ∈ Rn we can see that,

〈u,Σu〉 = Ẽ
µ
〈u, v − x〉2 > 0

i.e, Σ is p.s.d. Generate a Gaussian ρ with mean v and covariance Σ using the following algorithm,

1. sample a standard Gaussian vector g, i.e, a vector whose component is chosen independently from
N (0, 1).

2. output y = v + Σ1/2g

Indeed, as E g = 0 and E ggT = I therefore, Ex∼ρ x = E y = v and

E
x∼ρ

(x− v)(x− v)T = E(y − v)(y − v)T = EΣ1/2ggT (Σ1/2) = Σ

as required.

Now, before proceeding we need to formulate the MAX-CUT problem in terms of optimization over
{0, 1}n. This is done by considering the function fG(x) =

∑
{i,j}∈E(xi − xj)2 which gives E(S, S) at 1S .

Theorem 4.3. Let µ be a degree 2 pseudo distribution then there is randomized polynomial time procedure
to sample a distribution µ′ such that for a given graph G,

E
µ′
fG > 0.878 Ẽ

µ
fG

Proof. Assume Ẽµ 1 = 1
21, otherwise 1

2 (µ(x) + µ(1 − x)) can be considered instead. Now generate µ′ as
follows,

1. choose a standard Gaussian g with matching first and second moments.

2. output x′ ∈ {0, 1}n where,

x′i =

{
0 gi < 1/2

1 gi > 1/2

Since the expectation operators are linear so showing the following is sufficient,

E
x∼µ′

(xi − xj)2 > 0.878 Ẽ
x∼µ

(xi − xj)2

12

Now, note that the variance of xi and xj are Eµ x2
i − 1

4 = Eµ x2
j − 1

4 = 1
4 and let ρ = 4Eµ xixj − 1. Since, g

has the same first two moments as x therefore we can write gj = ρgi +
√

1− ρ2g⊥i where g⊥i ∼ N (0, 1) is a
Gaussian independent of gi. This gives,

E(x′i − x′j)2 = P [sign(2gi − 1) 6= sign(2gj − 1)]

= P
s,t∼N (0,1)

[
sign(s) 6= sign(ρs+

√
1− ρ2t)

]

The last probability can be calculated by considering the fact
that (s, t) is an uniform point on the circle of radius 1. As the figure shows it turns out to be arccos ρ

π Now
observe that,

Ẽ
µ

(xi − xj)2 =
1

2
(1− ρ)

One can easily verify that,

inf
ρ

2 arccos ρ

π(1− ρ)
= 0.878

13

References

[ARV04] Sanjeev Arora, Satish Rao, and Umesh Vazirani, Expander flows, geometric embeddings and graph
partitioning, Proceedings of the 36th Annual ACM Symposium on Theory of Computing, ACM, New
York, 2004, pp. 222–231. MR 2121604 1

[BS16] Boaz Barak and David Steurer, Proofs, beliefs, and algorithms through the lens of sum-of-squares,
2016. 6

[Chl07] E. Chlamtac, Approximation algorithms using hierarchies of semidefinite programming relaxations,
48th Annual IEEE Symposium on Foundations of Computer Science (FOCS’07), 2007, pp. 691–701.
6

[CT12] Eden Chlamtac and Madhur Tulsiani, Convex relaxations and integrality gaps, Handbook on semidef-
inite, conic and polynomial optimization, Internat. Ser. Oper. Res. Management Sci., vol. 166,
Springer, New York, 2012, pp. 139–169. MR 2894694 1

[FKP19] Noah Fleming, Pravesh Kothari, and Toniann Pitassi, Semialgebraic proofs and efficient algorithm
design, Foundations and Trends® in Theoretical Computer Science 14 (2019), no. 1-2, 1–221. 1, 4

[KNS01] Michael Krivelevich, Ram Nathaniel, and Benny Sudakov, Approximating coloring and maximum
independent sets in 3-uniform hypergraphs, J. Algorithms 41 (2001), no. 1, 99–113. MR 1855351 6

[Las01] Jean B. Lasserre, Global optimization with polynomials and the problem of moments, SIAM J. Optim.
11 (2000/01), no. 3, 796–817. MR 1814045 1, 4

[Lau03] Monique Laurent, A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relaxations
for 0-1 programming, Math. Oper. Res. 28 (2003), no. 3, 470–496. MR 1997246 1

[LLZ02] Michael Lewin, Dror Livnat, and Uri Zwick, Improved rounding techniques for the MAX 2-SAT and
MAX DI-CUT problems, Integer programming and combinatorial optimization, Lecture Notes in
Comput. Sci., vol. 2337, Springer, Berlin, 2002, pp. 67–82. MR 2061046 1

[LS91] L. Lovász and A. Schrijver, Cones of matrices and set-functions and 0-1 optimization, SIAM J.
Optim. 1 (1991), no. 2, 166–190. MR 1098425 1

[Par03] Pablo A Parrilo, Semidefinite programming relaxations for semialgebraic problems, Mathematical
programming 96 (2003), no. 2, 293–320. 4

[Rag08] Prasad Raghavendra, Optimal algorithms and inapproximability results for every CSP? [extended
abstract], STOC’08, ACM, New York, 2008, pp. 245–254. MR 2582901 6

[Rot13] Thomas Rothvoß, The lasserre hierarchy in approximation algorithms – Lecture Notes for
the MAPSP Tutorial, 2013, https://sites.math.washington.edu/~rothvoss/lecturenotes/

lasserresurvey.pdf. 1

[SA90] Hanif D. Sherali and Warren P. Adams, A hierarchy of relaxations between the continuous and convex
hull representations for zero-one programming problems, SIAM J. Discrete Math. 3 (1990), no. 3,
411–430. MR 1061981 1

[Sho87] NZ Shor, An approach to obtaining global extremums in polynomial mathematical programming
problems. kibernetika 5 102–106.. 1998, Nondifferentiable Optimization and Polynomial Problems
(1987). 4

14

https://sites.math.washington.edu/~rothvoss/lecturenotes/lasserresurvey.pdf
https://sites.math.washington.edu/~rothvoss/lecturenotes/lasserresurvey.pdf

A Polynomials in Hypercube

In the hypercube we can represent any function by a multilinear linear as xS(x) =
∏
i∈S xi form a basis for

the hypercube.

Lemma A.1. {xS}S⊂[n] forms a basis for B, where B = R{0,1}n is the set of Boolean function. Hence, if

f ∈ B, then f =
∑
S⊂[n] cSxS for some cS.

Proof. Consider any linear combination summing to 0, i.e,
∑
S′⊂[n] cS′xS′ = 0. Evaluating the same at 1S

gives us
∑
S′⊂S cS = 0. Now, using induction on |S|, we can get cS = 0. Hence xS is linearly independent.

Since there are 2n such functions they must form a basis.

Using the fact that xki = xi in the hypercube we have
∏
i xSi = xS where S =

⋃
i Si we get the following

corollary,

Corollary A.2. {xS |S ⊂ [n], |S| 6 d} forms a basis for degree d polynomials in the hypercube.

Proof (Sketch). For any d degree polynomial simplify each term to multilinear term using xk = x. As
multilinear terms span the space and are independent they form a basis.

B SA2(P)elaxation for independent set in cycle graphs

We will now compute a SA2(P) relaxation of the LP given in LP 2.3. As we discussed in SAt hierarchy
we introduce non-negative junta variables and multiply by constraints to obtain new constraints which are
polynomials of degree at most t. Here we introduce family of non negative junta polynomials of degree at
most 2 as,

xk > 0

xkxl > 0

1− xk > 0 ∀k ∈ [n] (13)

(1− xk)(1− xl) > 0 ∀k, l ∈ [n], k 6= l (14)

Multiplying the original constraints in LP 2.3 and the constraints above we obtain constraints as

xixk + xjxk 6 xk

0 6 xixk 6 xk

xi − xixk + xj − xjxk 6 1− xk ∀k ∈ [n] (15)

0 6 xi − xixk 6 1− xk ∀k ∈ [n] (16)

We can linearize the above to obtain the SA2(P) LP relaxation equvalent to LP 2.2 as,

LP B.1.
max

∑
i∈V

yi

subject to

yik + yjk 6 yk ∀(i, j) ∈ E,∀k ∈ [n] (17)

yi − yik + yj − yjk 6 1− yk ∀(i, j) ∈ E,∀k ∈ [n] (18)

0 6 yik 6 yk ∀i, k ∈ [n], i 6= k (19)

0 6 yi − yik 6 1− yk ∀i, k ∈ [n], i 6= k (20)

yi + yj 6 1 ∀(i, j) ∈ E (21)

0 6 yi 6 1 ∀i ∈ V (22)

We can solve the LP explicitly to exhibit that the LP value is n/2. However using the Sherali-Adams hierarchy
as a refutation system we can show that the objective value cannot exceed n/2. Here we show how to do this
for a specific case of n = 7 (we can easily extend it to any Cn).

15

Derive

y12 6 0

y2 − y12 + y3 − y13 6 1− y1

y13 + y14 6 y1

y4 − y14 + y5 − y15 6 1− y1

y15 + y16 6 y1

y6 − y16 + y7 − y17 6 1− y1

y17 6 0

By

k = 1, (i, j) = (1, 2) in (17)

k = 1, (i, j) = (2, 3) in (18)

k = 1, (i, j) = (3, 4) in (17)

k = 1, (i, j) = (4, 5) in (18)

k = 1, (i, j) = (5, 6) in (17)

k = 1, (i, j) = (6, 7) in (18)

k = 1, (i, j) = (1, 7) in (17)

Add all to obtain y1 + y2 + y3 + y4 + y5 + y6 + y7 6 3.

16

	Introduction
	Hierarchies of convex programs
	Lift and project framework
	Sherali-Adams hierarchy
	Utility of hierarchy
	Locally consistent probability distribution

	Lasserre hierarchy
	Lasserre Construction
	Properties of Lasserre
	Evolution of Lasserre hierarchy
	Utility of Lasserre hierarchy

	Sum of Squares on a Hypercube
	Sum of Squares Proofs
	Pseudo-Distribution and Pseudo-Expectation

	Applications of SOS
	Polynomials in Hypercube
	relaxation for independent set in cycle graphs

